Testosterone synthesis in the female songbird brain

Horm Behav. 2020 May;121:104716. doi: 10.1016/j.yhbeh.2020.104716. Epub 2020 Feb 28.

Abstract

Decades of work have established the brain as a source of steroid hormones, termed 'neurosteroids'. The neurosteroid neuroestradiol is produced in discrete brain areas and influences cognition, sensory processing, reproduction, neurotransmission, and disease. A prevailing research focus on neuroestradiol has essentially ignored whether its immediate synthesis precursor - the androgen testosterone - is also dynamically regulated within the brain. Testosterone itself can rapidly influence neurophysiology and behavior, and there is indirect evidence that the female brain may synthesize significant quantities of testosterone to regulate cognition, reproduction, and behavior. In songbirds, acoustic communication is regulated by neuroestrogens. Neuroestrogens are rapidly synthetized in the caudomedial nidopallium (NCM) of the auditory cortex of zebra finches in response to song and can influence auditory processing and song discrimination. Here, we examined the in vivo dynamics of NCM levels of the neuroestrogen synthesis precursor, testosterone. Unlike estradiol, testosterone did not appear to fluctuate in the female NCM during song exposure. However, a substantial song-induced elevation of testosterone was revealed in the left hemisphere NCM of females when local aromatization (i.e., conversion to estrogens) was locally blocked. This elevation was eliminated when local androgen synthesis was concomitantly blocked. Further, no parallel elevation was observed in the circulation in response to song playback, consistent with a local, neural origin of testosterone synthesis. To our knowledge, this study provides the first direct demonstration that testosterone fluctuates rapidly in the brain in response to socially-relevant environmental stimuli. Our findings suggest therefore that locally-derived 'neuroandrogens' can dynamically influence brain function and behavior. SIGNIFICANCE STATEMENT: This study demonstrates that androgen synthesis occurs rapidly in vivo in the brain in response to social cues, in a lateralized manner. Specifically, testosterone synthesis occurs within the left secondary auditory cortex when female zebra finches hear male song. Therefore, testosterone could act as a neuromodulator to rapidly shape sensory processing. Androgens have been linked to functions such as the control of female libido, and many steroidal drugs used for contraception, anti-cancer treatments, and sexual dysfunction likely influence the brain synthesis and action of testosterone. The current findings therefore establish a clear role for androgen synthesis in the female brain with implications for understanding neural circuit function and behavior in animals, including humans.

Keywords: Aromatase; Communication; Microdialysis; Neurosteroids; Non-genomic; Songbirds.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Cortex / physiology
  • Auditory Perception / physiology
  • Brain / metabolism*
  • Estradiol / metabolism
  • Estrogens / metabolism
  • Female
  • Finches / metabolism*
  • Finches / physiology
  • Male
  • Sex Characteristics
  • Testosterone / metabolism*
  • Vocalization, Animal / physiology

Substances

  • Estrogens
  • Testosterone
  • Estradiol