Complete Chloroplast Genome Sequence of Chinese Lacquer Tree (Toxicodendron vernicifluum, Anacardiaceae) and Its Phylogenetic Significance
- PMID: 32071921
- PMCID: PMC7011389
- DOI: 10.1155/2020/9014873
Complete Chloroplast Genome Sequence of Chinese Lacquer Tree (Toxicodendron vernicifluum, Anacardiaceae) and Its Phylogenetic Significance
Abstract
Chinese lacquer tree (Toxicodendron vernicifluum) is an important commercial arbor species widely cultivated in East Asia for producing highly durable lacquer. Here, we sequenced and analyzed the complete chloroplast (cp) genome of T. vernicifluum and reconstructed the phylogeny of Sapindales based on 52 cp genomes of six families. The plastome of T. vernicifluum is 159,571 bp in length, including a pair of inverted repeats (IRs) of 26,511 bp, separated by a large single-copy (LSC) region of 87,475 bp and a small single-copy (SSC) region of 19,074 bp. A total of 126 genes were identified, of which 81 are protein-coding genes, 37 are transfer RNA genes, and eight are ribosomal RNA genes. Forty-nine mononucleotide microsatellites, one dinucleotide microsatellite, two complex microsatellites, and 49 long repeats were determined. Structural differences such as inversion variation in LSC and gene loss in IR were detected across cp genomes of the six genera in Anacardiaceae. Phylogenetic analyses revealed that the genus Toxicodendron is closely related to Pistacia and Rhus. The phylogenetic relationships of the six families in Sapindales were well resolved. Overall, this study providing complete cp genome resources will be beneficial for determining potential molecular markers and evolutionary patterns of T. vernicifluum and its closely related species.
Copyright © 2020 Lu Wang et al.
Conflict of interest statement
The authors declare that there are no conflicts of interest regarding the publication of this paper.
Figures
Similar articles
-
Chloroplast genome sequence of triploid Toxicodendron vernicifluum and comparative analyses with other lacquer chloroplast genomes.BMC Genomics. 2023 Jan 31;24(1):56. doi: 10.1186/s12864-023-09154-2. BMC Genomics. 2023. PMID: 36721120 Free PMC article.
-
Three complete chloroplast genomes from two north American Rhus species and phylogenomics of Anacardiaceae.BMC Genom Data. 2024 Mar 15;25(1):30. doi: 10.1186/s12863-024-01200-6. BMC Genom Data. 2024. PMID: 38491489 Free PMC article.
-
The complete chloroplast genome of Toxicodendron griffithii.Mitochondrial DNA B Resour. 2020 May 28;5(3):2211-2212. doi: 10.1080/23802359.2020.1768931. eCollection 2020. Mitochondrial DNA B Resour. 2020. PMID: 33366976 Free PMC article.
-
Complete Chloroplast Genome Sequence of Sonchus brachyotus Helps to Elucidate Evolutionary Relationships with Related Species of Asteraceae.Biomed Res Int. 2021 Dec 1;2021:9410496. doi: 10.1155/2021/9410496. eCollection 2021. Biomed Res Int. 2021. PMID: 34901281 Free PMC article.
-
Integrating Ethnobotany, Phytochemistry, and Pharmacology of Cotinus coggygria and Toxicodendron vernicifluum: What Predictions can be Made for the European Smoketree?Front Pharmacol. 2021 Apr 19;12:662852. doi: 10.3389/fphar.2021.662852. eCollection 2021. Front Pharmacol. 2021. PMID: 33953688 Free PMC article. Review.
Cited by
-
The First Complete Chloroplast Genome of Campanula carpatica: Genome Characterization and Phylogenetic Diversity.Genes (Basel). 2023 Aug 7;14(8):1597. doi: 10.3390/genes14081597. Genes (Basel). 2023. PMID: 37628648 Free PMC article.
-
Molecular evolution and phylogenomic analysis of complete chloroplast genomes of Cotinus (Anacardiaceae).Ecol Evol. 2023 May 29;13(5):e10134. doi: 10.1002/ece3.10134. eCollection 2023 May. Ecol Evol. 2023. PMID: 37261318 Free PMC article.
-
Complete Chloroplast Genome Sequence of the Western Poison Oak, Toxicodendron diversilobum (Anacardiaceae), from California.Microbiol Resour Announc. 2023 Mar 16;12(3):e0127922. doi: 10.1128/mra.01279-22. Epub 2023 Feb 16. Microbiol Resour Announc. 2023. PMID: 36794956 Free PMC article.
-
Chloroplast genome sequence of triploid Toxicodendron vernicifluum and comparative analyses with other lacquer chloroplast genomes.BMC Genomics. 2023 Jan 31;24(1):56. doi: 10.1186/s12864-023-09154-2. BMC Genomics. 2023. PMID: 36721120 Free PMC article.
-
Evaluation of genome size and phylogenetic relationships of the Saccharum complex species.3 Biotech. 2022 Nov;12(11):327. doi: 10.1007/s13205-022-03338-5. Epub 2022 Oct 19. 3 Biotech. 2022. PMID: 36276474 Free PMC article.
References
-
- Hashida K., Tabata M., Kuroda K., et al. Phenolic extractives in the trunk of Toxicodendron vernicifluum: chemical characteristics, contents and radial distribution. Journal of Wood Science. 2014;60(2):160–168. doi: 10.1007/s10086-013-1385-8. - DOI
-
- Gledhill D. The Names of Plants. Cambridge, UK: Cambridge University Press; 2008.
-
- Suzuki M., Noshiro S., Tanaka T. Origin of urushi (Toxicodendron vernicifluum) in the neolithic jomon period of Japan. Bulletin of the National Museum of Japanese History. 2014;187:49–70.
-
- Suzuki M., Yonekura K., Noshiro S. Distribution and habitat of Toxicodendron vernicifluum (Stokes) F. A. Barkley. (Anacardiaceae) in China. Japan Journal of Historic Botany. 2007;15(1):58–62.
-
- Noshiro S., Suzuki M. Rhus verniciflua Stokes grew in Japan since the early jomon period. Japanese Journal of Historic Botany. 2004;12(1):3–11.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
