Composite Interlayer Consisting of Alcohol-Soluble Polyfluorene and Carbon Nanotubes for Efficient Polymer Solar Cells

ACS Appl Mater Interfaces. 2020 Mar 25;12(12):14244-14253. doi: 10.1021/acsami.9b22933. Epub 2020 Mar 6.

Abstract

We report the synthesis of composite interlayers using alcohol-soluble polyfluorene (ASP)-wrapped single-walled carbon nanotubes (SWNTs) and their application as electron-transport layers for efficient organic solar cells. The ASP enables the individual dispersion of SWNTs in solution. The ASP-wrapped SWNT solutions are stable for 54 days without any aggregation or precipitation, indicating their very high dispersion stability. Using the ASP-wrapped SWNTs as a cathode interlayer on zinc oxide nanoparticles (ZnO NPs), a power conversion efficiency of 9.45% is obtained in PTB7-th:PC71BM-based organic solar cells, which is mainly attributed to the improvement in the short circuit current. Performance enhancements of 18 and 17% are achieved compared to those of pure ZnO NPs and ASP on ZnO NPs, respectively. In addition, the composite interlayer is applied to non-fullerene-based photovoltaics with PM6:Y6, resulting in a power conversion efficiency of up to 14.37%. The type of SWNT (e.g., in terms of diameter range and length) is not critical to the improvement in the charge-transport properties. A low density of SWNTs in the film (∼1 SWNTs/μm2 for ASP-wrapped SWNTs) has a significant influence on the charge transport in solar cells. The improvement in the performance of the solar cell is attributed to the increased internal quantum efficiency, balanced mobility between electrons and holes, and minimized charge recombination.

Keywords: alcohol-soluble polyfluorene; carbon nanotubes; composites; conjugated polyelectrolytes; electron transport layers; interfacial layers; interlayers; organic solar cells.