Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May;193(1):1-13.
doi: 10.1007/s00442-020-04624-w. Epub 2020 Feb 20.

CAM plant expansion favored indirectly by asymmetric climate warming and increased rainfall variability

Affiliations

CAM plant expansion favored indirectly by asymmetric climate warming and increased rainfall variability

Heng Huang et al. Oecologia. 2020 May.

Abstract

Recent observational evidence suggests that nighttime temperatures are increasing faster than daytime temperatures, while in some regions precipitation events are becoming less frequent and more intense. The combined ecological impacts of these climatic changes on crassulacean acid metabolism (CAM) plants and their interactions with other functional groups (i.e., grass communities) remain poorly understood. Here we developed a growth chamber experiment to investigate how two CAM-grass communities in desert ecosystems of the southwestern United States and northern Mexico respond to asymmetric warming and increasing rainfall variability. Grasses generally showed competitive advantages over CAM plants with increasing rainfall variability under ambient temperature conditions. In contrast, asymmetric warming caused mortality of both grass species (Bouteloua eriopoda and Bouteloua curtipendula) in both rainfall treatments due to enhanced drought stress. Grass mortality indirectly favored CAM plants even though the biomass of both CAM species Cylindropuntia imbricata and Opuntia phaeacantha significantly decreased. The stem's volume-to-surface ratio of C. imbricata was significantly higher in mixture than in monoculture under ambient temperature (both P < 0.0014); however, the difference became insignificant under asymmetric warming (both P > 0.1625), suggesting that warming weakens the negative effects of interspecific competition on CAM plant growth. Our findings suggest that while the increase in intra-annual rainfall variability enhances grass productivity, asymmetric warming may lead to grass mortality, thereby indirectly favoring the expansion of co-existing CAM plants. This study provides novel experimental evidence showing how the ongoing changes in global warming and rainfall variability affect CAM-grass growth and interactions in dryland ecosystems.

Keywords: Asymmetric warming; Climate change; Competition; Crassulacean acid metabolism; Drylands; Rainfall variability.

PubMed Disclaimer

Similar articles

Cited by

  • CAM Models: Lessons and Implications for CAM Evolution.
    Burgos A, Miranda E, Vilaprinyo E, Meza-Canales ID, Alves R. Burgos A, et al. Front Plant Sci. 2022 Jun 23;13:893095. doi: 10.3389/fpls.2022.893095. eCollection 2022. Front Plant Sci. 2022. PMID: 35812979 Free PMC article. Review.

LinkOut - more resources