Insights into allosteric control of microtubule dynamics from a buried β-tubulin mutation that causes faster growth and slower shrinkage

Protein Sci. 2020 Jun;29(6):1429-1439. doi: 10.1002/pro.3842. Epub 2020 Mar 9.


αβ-tubulin subunits cycle through a series of different conformations in the polymer lattice during microtubule growing and shrinking. How these allosteric responses to different tubulin:tubulin contacts contribute to microtubule dynamics, and whether the contributions are evolutionarily conserved, remains poorly understood. Here, we sought to determine whether the microtubule-stabilizing effects (slower shrinking) of the β:T238A mutation we previously observed using yeast αβ-tubulin would generalize to mammalian microtubules. Using recombinant human microtubules as a model, we found that the mutation caused slow microtubule shrinking, indicating that this effect of the mutation is indeed conserved. However, unlike in yeast, β:T238A human microtubules grew faster than wild-type and the mutation did not appear to attenuate the conformational change associated with guanosine 5'-triphosphate (GTP) hydrolysis in the lattice. We conclude that the assembly-dependent conformational change in αβ-tubulin can contribute to determine the rates of microtubule growing as well as shrinking. Our results also suggest that an allosteric perturbation like the β:T238A mutation can alter the behavior of terminal subunits without accompanying changes in the conformation of fully surrounded subunits in the body of the microtubule.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Allosteric Regulation
  • Humans
  • Microtubules / chemistry
  • Microtubules / metabolism*
  • Models, Molecular
  • Mutation*
  • Protein Subunits / chemistry
  • Protein Subunits / genetics
  • Protein Subunits / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Tubulin / chemistry
  • Tubulin / genetics*
  • Tubulin / metabolism


  • Protein Subunits
  • Recombinant Proteins
  • Tubulin