Progressive brainstem pathology in motor neuron diseases: Imaging data from amyotrophic lateral sclerosis and primary lateral sclerosis
- PMID: 32083157
- PMCID: PMC7016370
- DOI: 10.1016/j.dib.2020.105229
Progressive brainstem pathology in motor neuron diseases: Imaging data from amyotrophic lateral sclerosis and primary lateral sclerosis
Abstract
A standardised, single-centre, longitudinal imaging protocol was used to evaluate longitudinal brainstem alterations in 100 patients with amyotrophic lateral sclerosis (ALS) with reference to 33 patients with primary lateral sclerosis (PLS), 30 patients with frontotemporal dementia (FTD) and 100 healthy controls. "Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study" [1] ALS patients were scanned twice; 4 months apart. T1-weighted imaging data were acquired on a 3 T Philips Achieva MRI system, using a 3D Inversion Recovery prepared Spoiled Gradient Recalled echo (IR-SPGR) sequence. Raw MRI data underwent meticulous quality control before pre-processing. A Bayesian segmentation algorithm was utilised to parcellate the brainstem into the medulla oblongata, pons and mesencephalon before estimating the volume of each segment. Vertex-based shape analyses were carried out to characterise anatomical patterns of atrophy. Brainstem volume loss in ALS was dominated by medulla oblongata atrophy, but significant pontine pathology was also detected. Brainstem volume reductions were more significant in PLS than in ALS after correcting for demographic variables and total intracranial volume. Shape analyses revealed bilateral 'flattening' of the medullary pyramids in ALS compared to healthy controls. Our data demonstrate that computational neuroimaging readily detects brainstem pathology in vivo in both amyotrophic lateral sclerosis and primary lateral sclerosis.
Keywords: Amyotrophic lateral sclerosis; Brainstem; Frontotemporal dementia; Magnetic resonance imaging; Medulla oblongata; Mesencephalon; Pons; Primary lateral sclerosis.
© 2020 The Authors.
Figures
Similar articles
-
Medulla oblongata volume as a promising predictor of survival in amyotrophic lateral sclerosis.Neuroimage Clin. 2022;34:103015. doi: 10.1016/j.nicl.2022.103015. Epub 2022 Apr 22. Neuroimage Clin. 2022. PMID: 35561555 Free PMC article.
-
Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging.Front Neurol. 2021 Aug 16;12:723450. doi: 10.3389/fneur.2021.723450. eCollection 2021. Front Neurol. 2021. PMID: 34484106 Free PMC article. Review.
-
Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: A longitudinal neuroimaging study.Neuroimage Clin. 2019;24:102054. doi: 10.1016/j.nicl.2019.102054. Epub 2019 Oct 24. Neuroimage Clin. 2019. PMID: 31711033 Free PMC article.
-
Thalamic, hippocampal and basal ganglia pathology in primary lateral sclerosis and amyotrophic lateral sclerosis: Evidence from quantitative imaging data.Data Brief. 2020 Jan 10;29:105115. doi: 10.1016/j.dib.2020.105115. eCollection 2020 Apr. Data Brief. 2020. PMID: 32055654 Free PMC article.
-
Neuroimaging in amyotrophic lateral sclerosis.Biomark Med. 2012 Jun;6(3):319-37. doi: 10.2217/bmm.12.26. Biomark Med. 2012. PMID: 22731907 Review.
Cited by
-
Medulla oblongata volume as a promising predictor of survival in amyotrophic lateral sclerosis.Neuroimage Clin. 2022;34:103015. doi: 10.1016/j.nicl.2022.103015. Epub 2022 Apr 22. Neuroimage Clin. 2022. PMID: 35561555 Free PMC article.
-
Frontotemporal Pathology in Motor Neuron Disease Phenotypes: Insights From Neuroimaging.Front Neurol. 2021 Aug 16;12:723450. doi: 10.3389/fneur.2021.723450. eCollection 2021. Front Neurol. 2021. PMID: 34484106 Free PMC article. Review.
-
Extra-motor cerebral changes and manifestations in primary lateral sclerosis.Brain Imaging Behav. 2021 Oct;15(5):2283-2296. doi: 10.1007/s11682-020-00421-4. Epub 2021 Jan 7. Brain Imaging Behav. 2021. PMID: 33409820
-
Cortical progression patterns in individual ALS patients across multiple timepoints: a mosaic-based approach for clinical use.J Neurol. 2021 May;268(5):1913-1926. doi: 10.1007/s00415-020-10368-7. Epub 2021 Jan 5. J Neurol. 2021. PMID: 33399966
-
The imaging signature of C9orf72 hexanucleotide repeat expansions: implications for clinical trials and therapy development.Brain Imaging Behav. 2021 Oct;15(5):2693-2719. doi: 10.1007/s11682-020-00429-w. Epub 2021 Jan 5. Brain Imaging Behav. 2021. PMID: 33398779 Review.
References
-
- Bede P., Chipika R.H., Finegan E., Li Hi Shing S., Doherty M.A., Hengeveld J.C., Vajda A., Hutchinson S., Donaghy C., McLaughlin R.L., Hardiman O. Brainstem pathology in amyotrophic lateral sclerosis and primary lateral sclerosis: a longitudinal neuroimaging study. NeuroImage Clinical. 2019;24:102054. Epub 2019/11/12. - PMC - PubMed
-
- Bede P., Finegan E. Revisiting the pathoanatomy of pseudobulbar affect: mechanisms beyond corticobulbar dysfunction. Amyotroph Lateral Scler. frontotemporal degeneration. 2018;19:4–6. Epub 2017/11/03. - PubMed
-
- Hardiman O., Doherty C.P., Elamin M., Bede P. Springer Cham Heidelberg New York Dordrecht London© Springer International Publishing Switzerland 2016. Springer International Publishing; 2016. Neurodegenerative disorders: a clinical guide. 2016; pp. 1–336.
LinkOut - more resources
Full Text Sources
Miscellaneous
