A Deep Learning Approach to Antibiotic Discovery
- PMID: 32084340
- PMCID: PMC8349178
- DOI: 10.1016/j.cell.2020.01.021
A Deep Learning Approach to Antibiotic Discovery
Erratum in
-
A Deep Learning Approach to Antibiotic Discovery.Cell. 2020 Apr 16;181(2):475-483. doi: 10.1016/j.cell.2020.04.001. Cell. 2020. PMID: 32302574 No abstract available.
Abstract
Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.
Keywords: antibiotic resistance; antibiotic tolerance; antibiotics; drug discovery; machine learning.
Copyright © 2020 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of Interests J.J.C. is scientific co-founder and SAB chair of EnBiotix, an antibiotic drug discovery company.
Figures
Comment in
-
Parsing Molecules for Drug Discovery.Biochemistry. 2020 May 5;59(17):1645-1646. doi: 10.1021/acs.biochem.0c00278. Epub 2020 Apr 21. Biochemistry. 2020. PMID: 32315170 Free PMC article. No abstract available.
Similar articles
-
Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii.Nat Chem Biol. 2023 Nov;19(11):1342-1350. doi: 10.1038/s41589-023-01349-8. Epub 2023 May 25. Nat Chem Biol. 2023. PMID: 37231267
-
On the ability of machine learning methods to discover novel scaffolds.J Mol Model. 2022 Dec 27;29(1):22. doi: 10.1007/s00894-022-05359-6. J Mol Model. 2022. PMID: 36574054
-
A brief guide to machine learning for antibiotic discovery.Curr Opin Microbiol. 2022 Oct;69:102190. doi: 10.1016/j.mib.2022.102190. Epub 2022 Aug 10. Curr Opin Microbiol. 2022. PMID: 35963098 Review.
-
A high-throughput small-molecule screen to identify a novel chemical inhibitor of Clostridium difficile.Int J Antimicrob Agents. 2014 Jul;44(1):69-73. doi: 10.1016/j.ijantimicag.2014.03.007. Epub 2014 Apr 24. Int J Antimicrob Agents. 2014. PMID: 24837414 Free PMC article.
-
Defining new chemical space for drug penetration into Gram-negative bacteria.Nat Chem Biol. 2020 Dec;16(12):1293-1302. doi: 10.1038/s41589-020-00674-6. Epub 2020 Nov 16. Nat Chem Biol. 2020. PMID: 33199906 Free PMC article. Review.
Cited by
-
An automatic end-to-end chemical synthesis development platform powered by large language models.Nat Commun. 2024 Nov 23;15(1):10160. doi: 10.1038/s41467-024-54457-x. Nat Commun. 2024. PMID: 39580482 Free PMC article.
-
Synthetic indole derivatives as an antibacterial agent inhibiting respiratory metabolism of multidrug-resistant gram-positive bacteria.Commun Biol. 2024 Nov 12;7(1):1489. doi: 10.1038/s42003-024-06996-8. Commun Biol. 2024. PMID: 39533040 Free PMC article.
-
Graph neural networks are promising for phenotypic virtual screening on cancer cell lines.Biol Methods Protoc. 2024 Sep 3;9(1):bpae065. doi: 10.1093/biomethods/bpae065. eCollection 2024. Biol Methods Protoc. 2024. PMID: 39502795 Free PMC article.
-
Recent advances from computer-aided drug design to artificial intelligence drug design.RSC Med Chem. 2024 Oct 11. doi: 10.1039/d4md00522h. Online ahead of print. RSC Med Chem. 2024. PMID: 39493228 Free PMC article. Review.
-
TamGen: drug design with target-aware molecule generation through a chemical language model.Nat Commun. 2024 Oct 29;15(1):9360. doi: 10.1038/s41467-024-53632-4. Nat Commun. 2024. PMID: 39472567 Free PMC article.
References
-
- Balaban NQ, Helaine S, Lewis K, Ackermann M, Aldridge B, Andersson DI, Brynildsen MP, Bumann D, Camilli A, Collins JJ, Dehio C, Fortune S, Ghigo JM, Hardt WD, Harms A, Heinemann M, Hung DT, Jenal U, Levin BR, Michiels J, Storz G, Tan MW, Tenson T, Van Melderen L, Zinkernagel A, 2019. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol 17, 441–448. - PMC - PubMed
-
- Brown DG, May-Dracka TL, Gagnon MM, Tommasi R, 2014. Trends and exceptions of physical properties on antibacterial activity for Gram-positive and Gram-negative pathogens. J. Med. Chem 57, 10144–10161. - PubMed
-
- Brown ED, Wright GD, 2016. Antibacterial drug discovery in the resistance era. Nature 529, 336–343. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
