Knocking out C9ORF72 Exacerbates Axonal Trafficking Defects Associated with Hexanucleotide Repeat Expansion and Reduces Levels of Heat Shock Proteins

Stem Cell Reports. 2020 Mar 10;14(3):390-405. doi: 10.1016/j.stemcr.2020.01.010. Epub 2020 Feb 20.

Abstract

In amyotrophic lateral sclerosis (ALS) motor neurons (MNs) undergo dying-back, where the distal axon degenerates before the soma. The hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS, but the mechanism of pathogenesis is largely unknown with both gain- and loss-of-function mechanisms being proposed. To better understand C9ORF72-ALS pathogenesis, we generated isogenic induced pluripotent stem cells. MNs with HRE in C9ORF72 showed decreased axonal trafficking compared with gene corrected MNs. However, knocking out C9ORF72 did not recapitulate these changes in MNs from healthy controls, suggesting a gain-of-function mechanism. In contrast, knocking out C9ORF72 in MNs with HRE exacerbated axonal trafficking defects and increased apoptosis as well as decreased levels of HSP70 and HSP40, and inhibition of HSPs exacerbated ALS phenotypes in MNs with HRE. Therefore, we propose that the HRE in C9ORF72 induces ALS pathogenesis via a combination of gain- and loss-of-function mechanisms.

Keywords: C9ORF72; HSP40; HSP70; amyotrophic lateral sclerosis; axonal trafficking; disease modeling; gene editing; heat shock proteins; induced pluripotent stem cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis / genetics
  • Amyotrophic Lateral Sclerosis / pathology
  • Apoptosis / drug effects
  • Axons / drug effects
  • Axons / metabolism*
  • Benzhydryl Compounds / pharmacology
  • C9orf72 Protein / genetics*
  • C9orf72 Protein / metabolism
  • Cell Differentiation / drug effects
  • Cytoplasmic Granules / drug effects
  • Cytoplasmic Granules / metabolism
  • DNA Repeat Expansion / genetics*
  • Gain of Function Mutation / genetics
  • Gene Knockout Techniques*
  • HSP40 Heat-Shock Proteins / metabolism*
  • HSP70 Heat-Shock Proteins / metabolism*
  • Humans
  • Induced Pluripotent Stem Cells / drug effects
  • Induced Pluripotent Stem Cells / metabolism
  • Models, Biological
  • Motor Neurons / drug effects
  • Motor Neurons / metabolism
  • Motor Neurons / pathology
  • Nerve Degeneration / pathology
  • Pyrrolidinones / pharmacology
  • Transcriptome / genetics

Substances

  • Benzhydryl Compounds
  • C9orf72 Protein
  • C9orf72 protein, human
  • HSP40 Heat-Shock Proteins
  • HSP70 Heat-Shock Proteins
  • KNK 437
  • Pyrrolidinones