Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization

Curr Biol. 2020 Mar 9;30(5):899-908.e6. doi: 10.1016/j.cub.2019.12.056. Epub 2020 Feb 20.


Neuronal dendrites are characterized by an anti-parallel microtubule organization. The mixed oriented microtubules promote dendrite development and facilitate polarized cargo trafficking; however, the mechanism that regulates dendritic microtubule organization is still unclear. Here, we found that the kinesin-14 motor KIFC3 is important for organizing dendritic microtubules and to control dendrite development. The kinesin-14 motor proteins (Drosophila melanogaster Ncd, Saccharomyces cerevisiae Kar3, Saccharomyces pombe Pkl1, and Xenopus laevis XCTK2) are characterized by a C-terminal motor domain and are well described to organize the spindle microtubule during mitosis using an additional microtubule binding site in the N terminus [1-4]. In mammals, there are three kinesin-14 members, KIFC1, KIFC2, and KIFC3. It was recently shown that KIFC1 is important for organizing axonal microtubules in neurons, a process that depends on the two microtubule-interacting domains [5]. Unlike KIFC1, KIFC2 and KIFC3 lack the N-terminal microtubule binding domain and only have one microtubule-interacting domain, the motor domain [6, 7]. Thus, in order to regulate microtubule-microtubule crosslinking or sliding, KIFC2 and KIFC3 need to interact with additional microtubule binding proteins to connect two microtubules. We found that KIFC3 has a dendrite-specific distribution and interacts with microtubule minus-end binding protein CAMSAP2. Depletion of KIFC3 or CAMSAP2 results in increased microtubule dynamics during dendritic development. We propose a model in which CAMSAP2 anchors KIFC3 at microtubule minus ends and immobilizes microtubule arrays in dendrites.

Keywords: CAMSAP2; KIFC3; MAP; dendrite; kinesin; microtubule minus-end; microtubule organization; motor protein; neuron.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • COS Cells
  • Chlorocebus aethiops
  • HEK293 Cells
  • Humans
  • Kinesins / genetics*
  • Kinesins / metabolism
  • Microtubule-Associated Proteins / genetics*
  • Microtubule-Associated Proteins / metabolism
  • Microtubules / metabolism*
  • Protein Binding
  • Protein Transport


  • CAMSAP2 protein, human
  • Kifc3 protein, human
  • Microtubule-Associated Proteins
  • Kinesins