Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity

Ecol Modell. 2020 Feb 1:417:108856. doi: 10.1016/j.ecolmodel.2019.108856.

Abstract

Variance in life history outcomes among individuals is a requirement for natural selection, and a determinant of the ecological dynamics of populations. Heterogeneity among individuals will cause such variance, but so will the inherently stochastic nature of their demography. The relative contributions of these variance components - stochasticity and heterogeneity - to life history outcomes are presented here in a general, demographic calculation. A general formulation of sensitivity analysis is provided for the relationship between the variance components and the demographic rates within the life cycle. We illustrate these novel methods with two examples; the variance in longevity within and between frailty groups in a laboratory population of fruit flies, and the variance in lifetime reproductive output within and between initial environment states in a perennial herb in a stochastic fire environment. In fruit flies, an increase in mortality would increase the variance due to stochasticity and reduce that due to heterogeneity. In the plant example, increasing mortality reduces, and increasing fertility increases both variance components. Sensitivity analyses such as these can provide a powerful tool in identifying patterns among life history stages and heterogeneity groups and their contributions to variance in life history outcomes.

Keywords: Heterogeneity; Individual stochasticity; Life history; Lifetime reproductive output; Longevity; Sensitivity analysis; Variance decomposition.