Molecular Characteristics and Antimicrobial Susceptibility Profiles of Elizabethkingia Clinical Isolates in Shanghai, China

Infect Drug Resist. 2020 Jan 29:13:247-256. doi: 10.2147/IDR.S240963. eCollection 2020.

Abstract

Purpose: To investigate molecular characteristics and antimicrobial susceptibility profiles of clinical isolates of Elizabethkingia in Shanghai, China.

Methods: Elizabethkingia isolates were collected in a university-affiliated hospital in 2012-2015 and 2017-2018. They were re-identified to species level by 16S rRNA gene and species-specific gene sequencing. Antimicrobial susceptibility testing, screening for metallo-beta-lactamase production, identification of antimicrobial resistance genes and pulsed-field gel electrophoresis (PFGE) were performed.

Results: Among 52 Elizabethkingia isolates, E. anophelis was the most prevalent species (67.3%), followed by E. meningoseptica (26.9%). High carriage rates of bla CME, bla BlaB and bla GOB genes were consistent with the poor in vitro activity of most β-lactams including carbapenems. Nevertheless, β-lactamase inhibitors increased susceptibility rates significantly for cefoperazone and piperacillin. Susceptibility rates for minocycline, tigecycline, rifampin and levofloxacin were 100%, 78.8%, 76.9% and 71.2%, respectively. Ser83Ile or Ser83Arg substitution in the DNA gyrase A unit was associated with resistance to fluoroquinolones. MIC50/MIC90 values of vancomycin and linezolid were 16/16 mg/L and 16/32 mg/L, respectively. Molecular typing showed twenty-one different types of PFGE and more than one indistinguishable isolates were observed in each of the eight subtypes.

Conclusion: Tetracyclines, tigecycline, β-lactam/β-lactamase inhibitor combinations, rifampin and fluoroquinolones demonstrated high rates of in vitro activity against clinical isolates of Elizabethkingia. Both genetic diversity and clonality were observed from this health-care facility. Our report provides potential alternative treatment options for Elizabethkingia infections.

Keywords: Elizabethkingia; antimicrobial susceptibility; molecular typing; multidrug resistance; resistant mechanism.