Home, head direction stability, and grid cell distortion

J Neurophysiol. 2020 Apr 1;123(4):1392-1406. doi: 10.1152/jn.00518.2019. Epub 2020 Feb 26.

Abstract

The home is a unique location in the life of humans and animals. In rats, home presents itself as a multicompartmental space that involves integrating navigation through subspaces. Here we embedded the laboratory rat's home cage in the arena, while recording neurons in the animal's parasubiculum and medial entorhinal cortex, two brain areas encoding the animal's location and head direction. We found that head direction signals were unaffected by home cage presence or translocation. Head direction cells remain globally stable and have similar properties inside and outside the embedded home. We did not observe egocentric bearing encoding of the home cage. However, grid cells were distorted in the presence of the home cage. While they did not globally remap, single firing fields were translocated toward the home. These effects appeared to be geometrical in nature rather than a home-specific distortion and were not dependent on explicit behavioral use of the home cage during a hoarding task. Our work suggests that medial entorhinal cortex and parasubiculum do not remap after embedding the home, but local changes in grid cell activity overrepresent the embedded space location and might contribute to navigation in complex environments.NEW & NOTEWORTHY Neural findings in the field of spatial navigation come mostly from an abstract approach that separates the animal from even a minimally biological context. In this article we embed the home cage of the rat in the environment to address some of the complexities of natural navigation. We find no explicit home cage representation. While both head direction cells and grid cells remain globally stable, we find that embedded spaces locally distort grid cells.

Keywords: grid cell; head direction; home; homing; navigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior, Animal / physiology
  • Electrophysiological Phenomena / physiology*
  • Entorhinal Cortex / physiology*
  • Grid Cells / physiology*
  • Head Movements / physiology*
  • Hippocampus / physiology*
  • Housing, Animal*
  • Male
  • Rats
  • Rats, Long-Evans
  • Spatial Navigation / physiology*