Enterotoxin Genes, Antibiotic Susceptibility, and Biofilm Formation of Low-Temperature-Tolerant Bacillus cereus Isolated from Green Leaf Lettuce in the Cold Chain

Foods. 2020 Feb 25;9(3):249. doi: 10.3390/foods9030249.

Abstract

The prevalence and characteristics of low-temperature-tolerant Bacillus cereus (psychrotolerant B. cereus) in green leaf lettuce collected during cold chain were investigated. Among the 101 isolated B. cereus samples, only 18 were capable of growth at 7 °C, and these isolates shared potential health hazard characteristics with mesophilic isolates. Most psychrotolerant B. cereus isolates contained various combinations of nheA, nheB, nheC, hblA, hblA, hblC, hblD, cytK, and entFM. Most isolates of psychrotolerant B. cereus possessed at least two enterotoxin genes and 28% of isolates harbored tested nine enterotoxin genes. Additionally, the psychrotolerant B. cereus isolates showed resistance to tetracycline and rifampin and intermediate levels of resistance to clindamycin. A total of 23% of isolates among psychrotolerant B. cereus displayed a high level of biofilm formation at 7 °C than at 10 °C or 30 °C. The results of this study indicate that cold distribution and storage for green leaf lettuce may fail to maintain food safety due to the presence of enterotoxigenic, antibiotic-resistant, and strong biofilm forming psychrotolerant B. cereus isolates, which therefore poses a potential health risk to the consumer. Our findings provide the first account of the prevalence and characteristics of psychrotolerant B. cereus isolated from green leaf lettuce during cold storage, suggesting a potential hazard of psychrotolerant B. cereus isolates to public health and the food industry.

Keywords: Bacillus cereus; antibiotic susceptibility; biofilm formation; cold chain; enterotoxin gene; low-temperature tolerant.