Plasmodium vivax transcriptional profiling of low input cryopreserved isolates through the intraerythrocytic development cycle

PLoS Negl Trop Dis. 2020 Mar 2;14(3):e0008104. doi: 10.1371/journal.pntd.0008104. eCollection 2020 Mar.

Abstract

Approximately one-third of the global population is at risk of Plasmodium vivax infection, and an estimated 7.51 million cases were reported in 2017. Although, P. vivax research is currently limited by the lack of a robust continuous in vitro culture system for this parasite, recent work optimizing short-term ex vivo culture of P. vivax from cryopreserved isolates has facilitated quantitative assays on synchronous parasites. Pairing this improved culture system with low-input Smart-seq2 RNAseq library preparation, we sought to determine whether transcriptional profiling of P. vivax would provide insight into the differential survival of parasites in different culture media. To this end we probed the transcriptional signature of three different ex vivo P. vivax samples in four different culture media using only 1000 cells for each time point taken during the course of the intraerythrocytic development cycle (IDC). Using this strategy, we achieved similar quality transcriptional data to previously reported P. vivax transcriptomes. We found little effect with varying culture media on parasite transcriptional signatures, identified many novel gametocyte-specific genes from transcriptomes of FACS-isolated gametocytes, and determined invasion ligand expression in schizonts in biological isolates and across the IDC. In total, these data demonstrate the feasibility and utility of P. vivax RNAseq-based transcriptomic studies using minimal biomass input to maximize experimental capacity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Child
  • Child, Preschool
  • Culture Media / chemistry
  • Erythrocytes / parasitology*
  • Female
  • Gene Expression Profiling*
  • Host-Pathogen Interactions*
  • Humans
  • Infant
  • Infant, Newborn
  • Malaria, Vivax / parasitology*
  • Male
  • Parasitology / methods
  • Plasmodium vivax / genetics
  • Plasmodium vivax / growth & development*
  • Sequence Analysis, RNA

Substances

  • Culture Media