Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Mar 23;30(6):1077-1091.e5.
doi: 10.1016/j.cub.2020.01.019. Epub 2020 Mar 5.

Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila

Affiliations
Free article

Presynaptic Active Zone Plasticity Encodes Sleep Need in Drosophila

Sheng Huang et al. Curr Biol. .
Free article

Abstract

Sleep is universal across species and essential for quality of life and health, as evidenced by the consequences of sleep loss. Sleep might homeostatically normalize synaptic gains made over wake states in order to reset information processing and storage and support learning, and sleep-associated synaptic (ultra)structural changes have been demonstrated recently. However, causal relationships between the molecular and (ultra)structural status of synapses, sleep homeostatic regulation, and learning processes have yet to be established. We show here that the status of the presynaptic active zone can directly control sleep in Drosophila. Short sleep mutants showed a brain-wide upregulation of core presynaptic scaffold proteins and release factors. Increasing the gene copy number of ELKS-family scaffold master organizer Bruchpilot (BRP) not only mimicked changes in the active zone scaffold and release proteins but importantly provoked sleep in a dosage-dependent manner, qualitatively and quantitatively reminiscent of sleep deprivation effects. Conversely, reducing the brp copy number decreased sleep in short sleep mutant backgrounds, suggesting a specific role of the active zone plasticity in homeostatic sleep regulation. Finally, elimination of BRP specifically in the sleep-promoting R2 neurons of 4xBRP animals partially restored sleep patterns and rescued learning deficits. Our results suggest that the presynaptic active zone plasticity driven by BRP operates as a sleep homeostatic actuator that also restricts periods of effective learning.

Keywords: active zone; learning and memory; sleep; sleep homeostasis; sleep need; synapse; synaptic plasticity.

PubMed Disclaimer

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

Similar articles

Cited by

Publication types

LinkOut - more resources