Structurally Characterized BODIPY-Appended Oxidovanadium(IV) β-Diketonates for Mitochondria-Targeted Photocytotoxicity

ACS Omega. 2020 Feb 24;5(8):4282-4292. doi: 10.1021/acsomega.9b04204. eCollection 2020 Mar 3.

Abstract

Mixed-ligand oxidovanadium(IV) β-diketonates having NNN-donor dipicolylamine-conjugated to boron-dipyrromethene (BODIPY in L1) and diiodo-BODIPY (in L2) moieties, namely, [VO(L1)(acac)]Cl (1), [VO(L2)(acac)]Cl (2), and [VO(L1)(dbm)]Cl (3), where acac and dbm are monoanionic O,O-donor acetylacetone and 1,3-diphenyl-1,3-propanedione, were prepared, characterized, and tested for their photoinduced anticancer activity in visible light. Complexes 1 and 2 were structurally characterized as their PF6 - salts (1a and 2a) by X-ray crystallography. They showed VIVN3O3 six-coordinate geometry with dipicolylamine base as the facial ligand. The non-iodinated BODIPY complexes displayed absorption maxima at ∼501 nm, while it is ∼535 nm for the di-iodinated 2 in 10% DMSO-PBS buffer medium (pH = 7.2). Complexes 1 and 3 being green emissive (λem, ∼512 nm; λex, 470 nm; ΦF, ∼0.10) in 10% aqueous DMSO were used for cellular imaging studies. Complex 3 localized primarily in the mitochondria of the cervical HeLa cells with a co-localization coefficient value of 0.7. The non-emissive diiodo-BODIPY complex 2 showed generation of singlet oxygen (ΦΔ ≈ 0.47) on light activation. Annexin-V assay showed singlet oxygen-mediated cellular apoptosis, making this complex a targeted PDT agent.