This article deals with the exponential synchronization problem for complex dynamical networks (CDNs) with coupling delay by means of the event-triggered delayed impulsive control (ETDIC) strategy. This novel ETDIC strategy combining delayed impulsive control with the event-triggering mechanism is formulated based on the quadratic Lyapunov function. Among them, the event-triggering instants are generated whenever the ETDIC strategy is violated and delayed impulsive control is implemented only at event-triggering instants, which allows the existence of some network problems, such as packet loss, misordering, and retransmission. By employing the Lyapunov-Razumikhin (L-R) technique and impulsive control theory, some sufficient conditions with less conservatism are proposed in terms of linear matrix inequalities (LMIs), which indicates that the ETDIC strategy can guarantee the achievement of the exponential synchronization and eliminate the Zeno phenomenon. Finally, a numerical example and its simulations are presented to verify the effectiveness of the proposed ETDIC strategy.