Effect of Veneer-Drying Temperature on Selected Properties and Formaldehyde Emission of Birch Plywood

Polymers (Basel). 2020 Mar 5;12(3):593. doi: 10.3390/polym12030593.

Abstract

In this study, the effect of the veneer-drying process at elevated temperatures on selected properties and formaldehyde emission of plywood panels was determined. We assume that during the veneer drying at high temperatures, more formaldehyde is released from it, and therefore, a lower formaldehyde emission can be expected from the finished plywood. Prior to bonding, birch veneers were dried at 160 °C (control) and 185 °C in an industrial veneer steam dryer (SD) and at 180 °C, 240 °C and 280 °C in an industrial veneer gas dryer (GD). Two types of adhesives were used: urea-formaldehyde (UF) and phenol-formaldehyde (PF) resins. Bonding quality, bending strength and modulus of elasticity in bending, water absorption and thickness swelling of plywood samples were determined. The formaldehyde emission level of samples was also measured. It was concluded from the study that the effects of veneer-drying temperatures on the bonding strength and physical and mechanical properties of plywood panels were significant. Veneer-drying temperatures of 185 °C/SD, 180 °C/GD and 240 °C/GD negatively affected the bending strength and the modulus of elasticity along and across the fibres for both UF and PF plywood samples. Bonding strength mean values obtained from all test panels were above the required value (1.0 MPa) indicated in EN 314-2 standard. The lowest formaldehyde emissions for the UF and PF plywood samples were observed in the samples from veneer dried in a steam dryer at 185 °C/SD.

Keywords: bending strength; birch plywood; bonding strength; formaldehyde emission; modulus of elasticity; thickness swelling; veneer-drying temperature; water absorption.