Effect of peristaltic-like movement on bioengineered intestinal tube

Mater Today Bio. 2019 Sep 19:4:100027. doi: 10.1016/j.mtbio.2019.100027. eCollection 2019 Sep.

Abstract

The intestine is a highly heterogeneous hollow organ with biological, mechanical and chemical differences between lumen and wall. A functional human intestine model able to recreate the in vivo dynamic nature as well as the native tissue morphology is demanded for disease research and ​drug discovery. Here, we present a system, which combines an engineered three-dimensional (3D) tubular-shaped intestine model (3D In-tube) with a custom-made microbioreactor to impart the key aspects of the in vivo microenvironment of the human intestine, mimicking the rhythmic peristaltic movement. We adapted a previously established bottom-up tissue engineering approach, to produce the 3D tubular-shaped lamina propria and designed a glass microbioreactor to induce the air-liquid interface ​condition and peristaltic-like motion. Our results demonstrate the production of a villi-like protrusion and a correct spatial differentiation of the intestinal epithelial cells in enterocyte-like as well as mucus-producing-like cells on the lumen side of the 3D In-tube. This dynamic platform offers a proof-of-concept model of the human intestine.

Keywords: 3D engineered tubular-shaped intestine model; Air--liquid interface; Extracellular matrix; Microbioreactor; Peristaltic-like motion.