Proteusins are a family of bacterial ribosomal peptides that largely remain hypothetical genome-predicted metabolites. The only known members are the polytheonamide-type cytotoxins, which have complex structures due to numerous unusual posttranslational modifications (PTMs). Cyanobacteria contain large numbers of putative proteusin loci. To investigate their chemical and pharmacological potential beyond polytheonamide-type compounds, we characterized landornamide A, the product of the silent osp gene cluster from Kamptonema sp. PCC 6506. Pathway reconstruction in E. coli revealed a peptide combining lanthionines, d-residues, and, unusually, two ornithines introduced by the arginase-like enzyme OspR. Landornamide A inhibited lymphocytic choriomeningitis virus infection in mouse cells, thus making it one of the few known anti-arenaviral compounds. These data support proteusins as a rich resource of chemical scaffolds, new maturation enzymes, and bioactivities.
Keywords: RiPPs; antiviral agents; biosynthesis; ornithine; peptides.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.