Efficient inverse graphics in biological face processing
- PMID: 32181338
- PMCID: PMC7056304
- DOI: 10.1126/sciadv.aax5979
Efficient inverse graphics in biological face processing
Abstract
Vision not only detects and recognizes objects, but performs rich inferences about the underlying scene structure that causes the patterns of light we see. Inverting generative models, or "analysis-by-synthesis", presents a possible solution, but its mechanistic implementations have typically been too slow for online perception, and their mapping to neural circuits remains unclear. Here we present a neurally plausible efficient inverse graphics model and test it in the domain of face recognition. The model is based on a deep neural network that learns to invert a three-dimensional face graphics program in a single fast feedforward pass. It explains human behavior qualitatively and quantitatively, including the classic "hollow face" illusion, and it maps directly onto a specialized face-processing circuit in the primate brain. The model fits both behavioral and neural data better than state-of-the-art computer vision models, and suggests an interpretable reverse-engineering account of how the brain transforms images into percepts.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures
Similar articles
-
Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.J Neurosci. 2018 Aug 15;38(33):7255-7269. doi: 10.1523/JNEUROSCI.0388-18.2018. Epub 2018 Jul 13. J Neurosci. 2018. PMID: 30006365 Free PMC article.
-
Vision as temporal trace.Spat Vis. 2000;13(2-3):215-29. doi: 10.1163/156856800741225. Spat Vis. 2000. PMID: 11198233 Review.
-
A single glance at natural face images generate larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain.Neuroimage. 2016 Aug 15;137:21-33. doi: 10.1016/j.neuroimage.2016.04.045. Epub 2016 Apr 30. Neuroimage. 2016. PMID: 27138205
-
Deep neural networks rival the representation of primate IT cortex for core visual object recognition.PLoS Comput Biol. 2014 Dec 18;10(12):e1003963. doi: 10.1371/journal.pcbi.1003963. eCollection 2014 Dec. PLoS Comput Biol. 2014. PMID: 25521294 Free PMC article.
-
Visual Object Recognition: Do We (Finally) Know More Now Than We Did?Annu Rev Vis Sci. 2016 Oct 14;2:377-396. doi: 10.1146/annurev-vision-111815-114621. Epub 2016 Aug 3. Annu Rev Vis Sci. 2016. PMID: 28532357 Review.
Cited by
-
Face dissimilarity judgments are predicted by representational distance in morphable and image-computable models.Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2115047119. doi: 10.1073/pnas.2115047119. Epub 2022 Jun 29. Proc Natl Acad Sci U S A. 2022. PMID: 35767642 Free PMC article.
-
Perception of 3D shape integrates intuitive physics and analysis-by-synthesis.Nat Hum Behav. 2024 Feb;8(2):320-335. doi: 10.1038/s41562-023-01759-7. Epub 2023 Nov 23. Nat Hum Behav. 2024. PMID: 37996497
-
Seeing social interactions.Trends Cogn Sci. 2023 Dec;27(12):1165-1179. doi: 10.1016/j.tics.2023.09.001. Epub 2023 Oct 5. Trends Cogn Sci. 2023. PMID: 37805385 Free PMC article. Review.
-
From CAPTCHA to Commonsense: How Brain Can Teach Us About Artificial Intelligence.Front Comput Neurosci. 2020 Oct 22;14:554097. doi: 10.3389/fncom.2020.554097. eCollection 2020. Front Comput Neurosci. 2020. PMID: 33192426 Free PMC article.
-
Contrastive learning explains the emergence and function of visual category-selective regions.Sci Adv. 2024 Sep 27;10(39):eadl1776. doi: 10.1126/sciadv.adl1776. Epub 2024 Sep 25. Sci Adv. 2024. PMID: 39321304 Free PMC article.
References
-
- B. A. Olshausen, Perception as an inference problem, in The Cognitive Neurosciences, M. Gazzaniga, R. Mangun, Eds. (MIT Press, 2013).
-
- Yuille A., Kersten D., Vision as Bayesian inference: Analysis by synthesis? Trends Cogn. Sci. 10, 301–308 (2006). - PubMed
-
- H. Barrow, J. Tenenbaum, Recovering intrinsic scene characteristics from images, in Computer Vision Systems (Elsevier, 1978), p. 2.
-
- Lee T. S., Mumford D., Hierarchical bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20, 1434–1448 (2003). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
