Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices
- PMID: 32188950
- DOI: 10.1038/s41586-020-2085-3
Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices
Abstract
The Hubbard model, formulated by physicist John Hubbard in the 1960s1, is a simple theoretical model of interacting quantum particles in a lattice. The model is thought to capture the essential physics of high-temperature superconductors, magnetic insulators and other complex quantum many-body ground states2,3. Although the Hubbard model provides a greatly simplified representation of most real materials, it is nevertheless difficult to solve accurately except in the one-dimensional case2,3. Therefore, the physical realization of the Hubbard model in two or three dimensions, which can act as an analogue quantum simulator (that is, it can mimic the model and simulate its phase diagram and dynamics4,5), has a vital role in solving the strong-correlation puzzle, namely, revealing the physics of a large number of strongly interacting quantum particles. Here we obtain the phase diagram of the two-dimensional triangular-lattice Hubbard model by studying angle-aligned WSe2/WS2 bilayers, which form moiré superlattices6 because of the difference between the lattice constants of the two materials. We probe the charge and magnetic properties of the system by measuring the dependence of its optical response on an out-of-plane magnetic field and on the gate-tuned carrier density. At half-filling of the first hole moiré superlattice band, we observe a Mott insulating state with antiferromagnetic Curie-Weiss behaviour, as expected for a Hubbard model in the strong-interaction regime2,3,7-9. Above half-filling, our experiment suggests a possible quantum phase transition from an antiferromagnetic to a weak ferromagnetic state at filling factors near 0.6. Our results establish a new solid-state platform based on moiré superlattices that can be used to simulate problems in strong-correlation physics that are described by triangular-lattice Hubbard models.
Similar articles
-
Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices.Nature. 2020 Mar;579(7799):359-363. doi: 10.1038/s41586-020-2092-4. Epub 2020 Mar 18. Nature. 2020. PMID: 32188951
-
Correlated insulating states at fractional fillings of moiré superlattices.Nature. 2020 Nov;587(7833):214-218. doi: 10.1038/s41586-020-2868-6. Epub 2020 Nov 11. Nature. 2020. PMID: 33177668
-
Hubbard Model Physics in Transition Metal Dichalcogenide Moiré Bands.Phys Rev Lett. 2018 Jul 13;121(2):026402. doi: 10.1103/PhysRevLett.121.026402. Phys Rev Lett. 2018. PMID: 30085734
-
Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures.Chem Soc Rev. 2021 Jun 8;50(11):6401-6422. doi: 10.1039/d0cs01002b. Chem Soc Rev. 2021. PMID: 33942837 Review.
-
Emerging Characteristics and Properties of Moiré Materials.Nanomaterials (Basel). 2023 Oct 30;13(21):2881. doi: 10.3390/nano13212881. Nanomaterials (Basel). 2023. PMID: 37947726 Free PMC article. Review.
Cited by
-
Identification and Structural Characterization of Twisted Atomically Thin Bilayer Materials by Deep Learning.Nano Lett. 2024 Mar 6;24(9):2789-2797. doi: 10.1021/acs.nanolett.3c04815. Epub 2024 Feb 26. Nano Lett. 2024. PMID: 38407030
-
Maximally localized Wannier functions, interaction models, and fractional quantum anomalous Hall effect in twisted bilayer MoTe2.Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2316749121. doi: 10.1073/pnas.2316749121. Epub 2024 Feb 13. Proc Natl Acad Sci U S A. 2024. PMID: 38349878
-
Ultrafast Umklapp-assisted electron-phonon cooling in magic-angle twisted bilayer graphene.Sci Adv. 2024 Feb 9;10(6):eadj1361. doi: 10.1126/sciadv.adj1361. Epub 2024 Feb 9. Sci Adv. 2024. PMID: 38335282 Free PMC article.
-
Localisation-to-delocalisation transition of moiré excitons in WSe2/MoSe2 heterostructures.Nat Commun. 2024 Feb 5;15(1):1057. doi: 10.1038/s41467-024-44739-9. Nat Commun. 2024. PMID: 38316753 Free PMC article.
-
Terahertz linear/non-linear anomalous Hall conductivity of moiré TMD hetero-nanoribbons as topological valleytronics materials.Sci Rep. 2024 Jan 18;14(1):1581. doi: 10.1038/s41598-024-51721-4. Sci Rep. 2024. PMID: 38238394 Free PMC article.
References
-
- Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 276, 238–257 (1963). - DOI
-
- Quintanilla, J. & Hooley, C. The strong-correlations puzzle. Phys. World 22, 32–37 (2009). - DOI
-
- Rohringer, G. et al. Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory. Rev. Mod. Phys. 90, 025003 (2018). - DOI
-
- Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014). - DOI
-
- Tarruell, L. & Sanchez-Palencia, L. Quantum simulation of the Hubbard model with ultracold fermions in optical lattices. C. R. Phys. 19, 365–393 (2018). - DOI
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
