Coronavirus endoribonuclease targets viral polyuridine sequences to evade activating host sensors

Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8094-8103. doi: 10.1073/pnas.1921485117. Epub 2020 Mar 20.


Coronaviruses (CoVs) are positive-sense RNA viruses that can emerge from endemic reservoirs and infect zoonotically, causing significant morbidity and mortality. CoVs encode an endoribonuclease designated EndoU that facilitates evasion of host pattern recognition receptor MDA5, but the target of EndoU activity was not known. Here, we report that EndoU cleaves the 5'-polyuridines from negative-sense viral RNA, termed PUN RNA, which is the product of polyA-templated RNA synthesis. Using a virus containing an EndoU catalytic-inactive mutation, we detected a higher abundance of PUN RNA in the cytoplasm compared to wild-type-infected cells. Furthermore, we found that transfecting PUN RNA into cells stimulates a robust, MDA5-dependent interferon response, and that removal of the polyuridine extension on the RNA dampens the response. Overall, the results of this study reveal the PUN RNA to be a CoV MDA5-dependent pathogen-associated molecular pattern (PAMP). We also establish a mechanism for EndoU activity to cleave and limit the accumulation of this PAMP. Since EndoU activity is highly conserved in all CoVs, inhibiting this activity may serve as an approach for therapeutic interventions against existing and emerging CoV infections.

Keywords: EndoU; coronavirus; endoribonuclease; interferon; nsp15.

MeSH terms

  • Animals
  • Antiviral Agents / pharmacology
  • Cell Line
  • Chlorocebus aethiops
  • Coronavirus / enzymology
  • Coronavirus / immunology
  • Coronavirus / metabolism*
  • Coronavirus Infections / immunology*
  • Coronavirus Infections / virology*
  • Endoribonucleases / genetics
  • Endoribonucleases / metabolism*
  • Host Microbial Interactions / physiology
  • Humans
  • Interferons / pharmacology
  • Poly U / chemistry
  • Poly U / metabolism*
  • RNA, Viral / genetics
  • RNA, Viral / metabolism
  • Uridine / chemistry
  • Vero Cells
  • Viral Nonstructural Proteins / genetics
  • Viral Nonstructural Proteins / metabolism*
  • Virus Replication / physiology


  • Antiviral Agents
  • RNA, Viral
  • Viral Nonstructural Proteins
  • Poly U
  • Interferons
  • Endoribonucleases
  • nidoviral uridylate-specific endoribonuclease
  • Uridine