Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 May;104(10):4227-4234.
doi: 10.1007/s00253-020-10545-8. Epub 2020 Mar 20.

Biogenesis of macrofungal sclerotia: influencing factors and molecular mechanisms

Affiliations
Review

Biogenesis of macrofungal sclerotia: influencing factors and molecular mechanisms

Xueyan Sun et al. Appl Microbiol Biotechnol. 2020 May.

Abstract

Sclerotia are dense, hard tissue structures formed by asexual reproduction of fungal hyphae in adverse environmental conditions. Macrofungal sclerotia are used in medicinal materials, healthcare foods, and nutritional supplements because of their nutritional value and biologically active ingredients, which are attracting increasing attention. Over the past few decades, the influence of abiotic factors such as nutrition (e.g., carbon and nitrogen sources) and environmental conditions (e.g., temperature, pH), and of the local biotic community (e.g., concomitants) on the formation of macrofungal sclerotia has been studied. The molecular mechanisms controlling macrofungal sclerotia formation, including oxidative stress (reactive oxygen species), signal transduction (Ca2+ channels and mitogen-activated protein kinase pathways), and gene expression regulation (differential expression of important enzyme or structural protein genes), have also been revealed. At the end of this review, future research prospects in the field of biogenesis of macrofungal sclerotia are discussed. KEY POINTS: • We describe factors that influence biogenesis of macrofungal sclerotia. • We explain molecular mechanisms of sclerotial biogenesis. • We discuss future directions of study of macrofungal sclerotia biogenesis.

Keywords: Gene expression; Influencing factor; Macrofungal sclerotia; Oxidative stress; Signal transduction.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources