Metabolic regulation of endothelial SK channels and human coronary microvascular function

Int J Cardiol. 2020 Aug 1;312:1-9. doi: 10.1016/j.ijcard.2020.03.028. Epub 2020 Mar 12.

Abstract

Background: Diabetic (DM) inactivation of small conductance calcium-activated potassium (SK) channels contributes to coronary endothelial dysfunction. However, the mechanisms responsible for this down-regulation of endothelial SK channels are poorly understood. Thus, we hypothesized that the altered metabolic signaling in diabetes regulates endothelial SK channels and human coronary microvascular function.

Methods: Human atrial tissue, coronary arterioles and coronary artery endothelial cells (HCAECs) obtained from DM and non-diabetic (ND) patients (n = 12/group) undergoing cardiac surgery were used to analyze metabolic alterations, endothelial SK channel function, coronary microvascular reactivity and SK gene/protein expression/localization.

Results: The relaxation response of DM coronary arterioles to the selective SK channel activator SKA-31 and calcium ionophore A23187 was significantly decreased compared to that of ND arterioles (p < 0.05). Diabetes increases the level of NADH and the NADH/NAD+ ratio in human myocardium and HCAECs (p < 0.05). Increase in intracellular NADH (100 μM) in the HCAECs caused a significant decrease in endothelial SK channel currents (p < 0.05), whereas, intracellular application of NAD+ (500 μM) increased the endothelial SK channel currents (p < 0.05). Mitochondrial reactive oxygen species (mROS) of HCAECs and NADPH oxidase (NOX) and PKC protein expression in the human myocardium and coronary microvasculature were increased respectively (p < 0.05).

Conclusions: Diabetes is associated with metabolic changes in the human myocardium, coronary microvasculature and HCAECs. Endothelial SK channel function is regulated by the metabolite pyridine nucleotides, NADH and NAD+, suggesting that metabolic regulation of endothelial SK channels may contribute to coronary endothelial dysfunction in the DM patients with diabetes.

Keywords: Coronary microcirculation; Diabetes; Endothelial function; Endothelium-dependent hyperpolarization; Metabolic syndrome; SK channels.

MeSH terms

  • Arterioles
  • Coronary Vessels / diagnostic imaging
  • Diabetes Mellitus*
  • Endothelial Cells*
  • Heart
  • Humans