Background Angiotensin II stimulates epithelial Na+ channel (ENaC) by aldosterone-independent mechanism. We now test the effect of angiotensin II on ENaC in the distal convoluted tubule (DCT) and cortical collecting duct (CCD) of wild-type (WT) and kidney-specific mineralocorticoid receptor knockout mice (KS-MR-KO). Methods and Results We used electrophysiological, immunoblotting and renal-clearance methods to examine the effect of angiotensin II on ENaC in KS-MR-KO and wild-type mice. High K+ intake stimulated ENaC in the late DCT/early connecting tubule (DCT2/CNT) and in the CCD whereas low sodium intake stimulated ENaC in the CCD but not in the DCT2/CNT. The deletion of MR abolished the stimulatory effect of high K+ and low sodium intake on ENaC, partially inhibited ENaC in DCT2/CNT but almost abolished ENaC activity in the CCD. Application of losartan inhibited ENaC only in DCT2/CNT of both wild-type and KS-MR-KO mice but not in the CCD. Angiotensin II infusion for 3 days has a larger stimulatory effect on ENaC in the DCT2/CNT than in the CCD. Three lines of evidence indicate that angiotensin II can stimulate ENaC by MR-independent mechanism: (1) angiotensin II perfusion augmented ENaC expression in KS-MR-KO mice; (2) angiotensin II stimulated ENaC in the DCT2/CNT but to a lesser degree in the CCD in KS-MR-KO mice; (3) angiotensin II infusion augmented benzamil-induced natriuresis, increased the renal K+ excretion and corrected hyperkalemia of KS-MR-KO mice. Conclusions Angiotensin II-induced stimulation of ENaC occurs mainly in the DCT2/CNT and to a lesser degree in the CCD and MR plays a dominant role in determining ENaC activity in the CCD but to a lesser degree in the DCT2/CNT.
Keywords: AT1R; aldosterone; hyperkalemia; hypertension.