Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress

PLoS Pathog. 2020 Mar 25;16(3):e1008294. doi: 10.1371/journal.ppat.1008294. eCollection 2020 Mar.

Abstract

Mycobacterium abscessus (MAB) is a rapidly growing mycobacterium (RGM), and infections with this pathogen have been increasing worldwide. Recently, we reported that rough type (MAB-R) but not smooth type (MAB-S) strains enhanced type 1 interferon (IFN-I) secretion via bacterial phagosome escape, contributing to increased virulence. Here, we sought to investigate the role of mitochondrial oxidative stress in bacterial survival, IFN-I secretion and NLRP3 inflammasome activation in MAB-infected murine macrophages. We found that live but not heat-killed (HK) MAB-R strains increased mitochondrial ROS (mtROS) and increased release of oxidized mitochondrial DNA (mtDNA) into the cytosol of murine macrophages compared to the effects of live MAB-S strains, resulting in enhanced NLRP3 inflammasome-mediated IL-1β and cGAS-STING-dependent IFN-I production. Treatment of the infected macrophages with mtROS-modulating agents such as mito-TEMPO or cyclosporin A reduced cytosolic oxidized mtDNA, which inhibited the MAB-R strain-induced production of IL-1β and IFN-I. The reduced cytosolic oxidized mtDNA also inhibited intracellular growth of MAB-R strains via cytosolic escape following phagosomal rupture and via IFN-I-mediated cell-to-cell spreading. Moreover, our data showed that mtROS-dependent IFN-I production inhibited IL-1β production, further contributing to MAB-R intracellular survival in murine macrophages. In conclusion, our data indicated that MAB-R strains enhanced IFN-I and IL-1β production by inducing mtROS as a pathogen-associated molecular pattern (PAMP). These events also enhance bacterial survival in macrophages and dampen inflammation, which contribute to the pathogenesis of MAB-R strains.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Humans
  • Inflammasomes / genetics
  • Inflammasomes / immunology*
  • Interferon-beta / genetics
  • Interferon-beta / immunology
  • Interleukin-1beta / genetics
  • Interleukin-1beta / immunology
  • Macrophages / immunology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mitochondria / genetics
  • Mitochondria / metabolism
  • Mycobacterium Infections, Nontuberculous / genetics
  • Mycobacterium Infections, Nontuberculous / immunology*
  • Mycobacterium Infections, Nontuberculous / metabolism
  • Mycobacterium Infections, Nontuberculous / microbiology
  • Mycobacterium abscessus / physiology*
  • NLR Family, Pyrin Domain-Containing 3 Protein / genetics
  • NLR Family, Pyrin Domain-Containing 3 Protein / immunology*
  • Oxidative Stress
  • Reactive Oxygen Species / metabolism

Substances

  • Inflammasomes
  • Interleukin-1beta
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Nlrp3 protein, mouse
  • Reactive Oxygen Species
  • Interferon-beta

Grants and funding

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No., NRF- 2019R1A2C1084511). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.