Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 May:138:105675.
doi: 10.1016/j.envint.2020.105675. Epub 2020 Mar 23.

Granular activated carbon assisted nitrate-dependent anaerobic methane oxidation-membrane bioreactor: Strengthening effect and mechanisms

Affiliations
Free article

Granular activated carbon assisted nitrate-dependent anaerobic methane oxidation-membrane bioreactor: Strengthening effect and mechanisms

Peili Lu et al. Environ Int. 2020 May.
Free article

Abstract

Eutrophication and global warming are two main urgent environmental problems around the world. Nitrate-dependent Anaerobic Methane Oxidation (NdAMO) is a bioprocess coupling nitrate reduction with anaerobic methane oxidation, which could mitigate of these two environmental issues simultaneously. In this study, a newly granular active carbon-NdAMO-membrane bioreactor (GAC-NdAMO-MBR) system was established to evaluate its nitrogen removal efficiency, membrane fouling property and the probable strengthening mechanism was also uncovered. Results indicated that the nitrate removal rate in GAC-NdAMO-MBR reached 31.85 ± 3.19 mgN·L-1·d-1 while it was only 10.35 ± 2.02 mgN·L-1·d-1 in NdAMO-MBR system (lack of GAC), which was multiplied three-fold. The membrane flux decay rate of GAC- NdAMO -MBR was 0.15 L/m2·h·d while it was 0.49 L/m2·h·d without GAC, and the addition of GAC could extend membrane fouling time for 2.5 times. Notablely, the relative abundance of NdAMO bacteria sharply increased from 27.15% to 56.91% after GAC addition while the NdAMO archaea showed similar variation trend. The physicochemical property of GAC mainly contributed the strengthening effect. The porous structure of GAC absorbed methane and adhered by microorganism, which enhance microorganism amount and metabolic activity. The mechanical strength of GAC scoured membrane surface to mitigate external fouling and pores absorbed EPS to reduce internal fouling. The combined effects could improve NdAMO microorganism growth and metabolism activity and finally improved nitrogen removal performance and controlled membrane fouling. These findings could deep the knowledge of NdAMO process and help extend its application potential in environment science and engineering.

Keywords: Granular activated carbon; Mechanism; Membrane bioreactor; Nitrate-dependent anaerobic methane oxidation; Process properties.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources