Pharmacokinetic-Pharmacodynamic-Efficacy Modeling of ONO-7579, a Novel Pan-Tropomyosin Receptor Kinase Inhibitor, in a Murine Xenograft Tumor Model

J Pharmacol Exp Ther. 2020 Jun;373(3):361-369. doi: 10.1124/jpet.119.264499. Epub 2020 Mar 26.

Abstract

The orally available and novel small molecule ONO-7579 (N-{2-[4-(2-amino-5-chloropyridin-3-yl)phenoxy]pyrimidin-5-yl}-N'-[2-(methanesulfonyl)-5-(trifluoromethyl)phenyl]urea) is a highly potent and selective pan-tropomyosin receptor kinase (TRK) inhibitor. The objective of the present study was to characterize the pharmacokinetic (PK), pharmacodynamic (PD), and antitumor efficacy relationships of ONO-7579 in mice xenografted with a human colorectal cancer cell line, KM12 (harboring the tropomyosin 3 (TPM3) -neurotrophic tyrosine receptor kinase 1 fusion gene), via a PK/PD modeling approach. Plasma and tumor concentrations of ONO-7579, tumor levels of phosphorylated TPM3-TRKA (pTRKA), and tumor volumes in the murine model were measured with a single or multiple dose of ONO-7579 (0.06-0.60 mg/kg) administered once daily. The PK/PD/efficacy models were developed in a sequential manner. Changes in plasma concentrations of ONO-7579 were described with an oral one-compartment model. Tumor concentrations of ONO-7579 were higher than plasma concentrations, and changes in ONO-7579 tumor concentrations were described with an additional tumor compartment that had no influence on plasma concentrations. pTRKA in tumors was described with a direct Emax model, and the tumor ONO-7579 concentration causing 50% of the maximum effect was estimated to be 17.6 ng/g. In addition, a pTRKA-driven tumor growth inhibition model indicated that ONO-7579 started to sharply increase the antitumor effect at pTRKA inhibition rates >60% and required >91.5% to reduce tumors. In conclusion, the developed PK/PD/efficacy models revealed a "switch-like" relationship between pTRKA inhibition rate and antitumor effect in a murine KM12 xenograft model, demonstrating that pTRKA in tumors could serve as an effective biomarker for scheduling the dose regimen in early-stage clinical studies. SIGNIFICANCE STATEMENT: In recent years, clinical development of TRK inhibitors in patients with neurotrophic tyrosine receptor kinase fusion-positive solid tumors has been accelerated. This research found that phosphorylated TRKA was a useful biomarker for explaining the antitumor efficacy of TRK inhibitors using a pharmacokinetic/pharmacodynamic modeling approach in xenograft mice. This finding suggests a rational dosing regimen in early-stage clinical studies for ONO-7579 (N-{2-[4-(2-amino-5-chloropyridin-3-yl)phenoxy]pyrimidin-5-yl}-N'-[2-(methanesulfonyl)-5-(trifluoromethyl)phenyl]urea), a novel pan-TRK inhibitor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacokinetics
  • Antineoplastic Agents / pharmacology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Colorectal Neoplasms / drug therapy
  • Colorectal Neoplasms / metabolism
  • Disease Models, Animal
  • Female
  • Heterografts / drug effects
  • Heterografts / metabolism
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Organic Chemicals / pharmacokinetics*
  • Organic Chemicals / pharmacology*
  • Phosphorylation / drug effects
  • Protein Kinase Inhibitors / pharmacokinetics*
  • Protein Kinase Inhibitors / pharmacology*
  • Receptor Protein-Tyrosine Kinases / antagonists & inhibitors*
  • Xenograft Model Antitumor Assays / methods

Substances

  • Antineoplastic Agents
  • ONO-7579
  • Organic Chemicals
  • Protein Kinase Inhibitors
  • Receptor Protein-Tyrosine Kinases