Limb disuse causes overt, measurable alterations in motor functions. Motor imagery (MI) practice has been used as a behavioral strategy to prevent motor impairments due to limb disuse or immobilization. Yet, how MI operates at the neural level in the context of short-term limb immobilization remains understudied. We hypothesized that MI treatment applied during 12 h of arm immobilization prevents immobilization-related changes in resting-state electroencephalographic (rsEEG) power and functional connectivity. Fourteen participants first underwent rsEEG after 12 h of normal motor activity (without immobilization). Then, rsEEG recording was performed after 12 h of arm immobilization either with MI treatment or without, each condition separated by 1 week, according to a randomized within-subjects design. MI treatment consisted in performing varied visual and kinaesthetic MI exercises (5 sessions of 15 min every two hours). The results showed that in the delta, theta, alpha and beta frequency bands, interhemispheric difference in sensors power over the motor cortex (i.e. C3 vs. C4) was reduced after arm immobilization, while it did not change when MI treatment was delivered during the immobilization period. Moreover, functional connectivity across the sensors-network in the delta (1-4 Hz) and alpha (8-12 Hz) frequency bands decreased after immobilization while it was restored by MI treatment. To conclude, MI counteracts functional neural changes within and between motor regions in the context of limb immobilization. Practical applications for motor rehabilitation strategies, particularly in stroke patients, are also discussed.