Not so robust: Robusta coffee production is highly sensitive to temperature

Glob Chang Biol. 2020 Jun;26(6):3677-3688. doi: 10.1111/gcb.15097. Epub 2020 Apr 17.

Abstract

Coffea canephora (robusta coffee) is the most heat-tolerant and 'robust' coffee species and therefore considered more resistant to climate change than other types of coffee production. However, the optimum production range of robusta has never been quantified, with current estimates of its optimal mean annual temperature range (22-30°C) based solely on the climatic conditions of its native range in the Congo basin, Central Africa. Using 10 years of yield observations from 798 farms across South East Asia coupled with high-resolution precipitation and temperature data, we used hierarchical Bayesian modeling to quantify robusta's optimal temperature range for production. Our climate-based models explained yield variation well across the study area with a cross-validated mean R2 = .51. We demonstrate that robusta has an optimal temperature below 20.5°C (or a mean minimum/maximum of ≤16.2/24.1°C), which is markedly lower, by 1.5-9°C than current estimates. In the middle of robusta's currently assumed optimal range (mean annual temperatures over 25.1°C), coffee yields are 50% lower compared to the optimal mean of ≤20.5°C found here. During the growing season, every 1°C increase in mean minimum/maximum temperatures above 16.2/24.1°C corresponded to yield declines of ~14% or 350-460 kg/ha (95% credible interval). Our results suggest that robusta coffee is far more sensitive to temperature than previously thought. Current assessments, based on robusta having an optimal temperature range over 22°C, are likely overestimating its suitable production range and its ability to contribute to coffee production as temperatures increase under climate change. Robusta supplies 40% of the world's coffee, but its production potential could decline considerably as temperatures increase under climate change, jeopardizing a multi-billion dollar coffee industry and the livelihoods of millions of farmers.

Keywords: climate interactions; coffee supply; coffee yield; horticulture; minimum temperature; night temperature; tropical agriculture.

MeSH terms

  • Bayes Theorem
  • Climate Change
  • Coffea*
  • Coffee
  • Temperature

Substances

  • Coffee