A daytime nap restores hippocampal function and improves declarative learning

Sleep. 2020 Sep 14;43(9):zsaa058. doi: 10.1093/sleep/zsaa058.


Study objectives: Daytime naps can confer benefits on subsequent declarative learning, but the physiological correlates of this improvement are less well studied. We examined learning following a daytime nap compared with an equivalent waking period using fMRI and polysomnography.

Methods: Forty healthy young adults who slept normally the previous night encoded word pair lists in an MRI scanner at 13:00 and 16:30. Between sessions, participants either stayed awake and watched a documentary (Wake Group; N = 20) or had a 90-minute nap opportunity (Nap Group; N = 20) monitored by polysomnography. Approximately 40 minutes after completing each encoding session, memory for learned words was assessed using cued-recall.

Results: A significant Session × Group interaction effect (p < 0.001) was observed in which memory was significantly improved in the Nap but not in the Wake group (p < 0.001). There was also a Session × Run × Group interaction effect in the left hippocampus (p = 0.001), whereby activation during word pair encoding increased only following the nap. Both performance improvement (rs = 0.46, p = 0.04) and nap-related increase in hippocampal activation (rs = 0.46, p = 0.04) were correlated with nap spindle count (12-15 Hz) but not with slow oscillation power (p's ≥ 0.18).

Conclusions: After a habitual nocturnal sleep, participants who had a 90-minute afternoon nap encoded word pairs better than a comparable group who stayed awake. Increases in hippocampal activation following the nap suggest restored hippocampal function. Naptime spindles may contribute to improved memory.

Keywords: daytime nap; declarative learning; hippocampus; sleep spindles; slow oscillations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hippocampus / diagnostic imaging
  • Humans
  • Learning*
  • Memory
  • Sleep*
  • Wakefulness
  • Young Adult