Quinazoline-4(3H)-one derivatives as novel and potent inhibitors of soluble epoxide hydrolase: Design, synthesis and biological evaluation

Bioorg Chem. 2020 Jun:99:103736. doi: 10.1016/j.bioorg.2020.103736. Epub 2020 Mar 20.

Abstract

Inhibition of soluble epoxide hydrolase (sEH) is considered as a promising target to reduce blood pressure, improve insulin sensitivity, and decrease inflammation. In this study, a series of some novel quinazoline-4(3H)-one derivatives (3a-t) with varying steric and electronic properties was designed, synthesized and evaluated as sEH Inhibitors. Most of the synthesized compounds had similar inhibitory activity to the commercial reference inhibitor, 12-(3-adamantan-1-ylureido)dodecanoic acid, and amongst them, 4-chloro-N-(4-(4-oxo-3,4-dihydroquinazoline-2-yl)phenyl)benzamide (3g) was identified as the most active sEH inhibitor (IC50 = 0.5 nM), about 2-fold more potent compared to the reference inhibitor. The results of molecular modeling followed by biological studies indicate that a quinazolinone ring serves as a suitable scaffold to develop novel small molecule candidates to inhibit sEH and the nature of substituent on the amide moiety has a moderate effect on the activity.

Keywords: Biological study; Inhibitor; Molecular modeling; Quinazoline-4(3H)-one; Soluble epoxide hydrolase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dose-Response Relationship, Drug
  • Drug Design*
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology*
  • Epoxide Hydrolases / antagonists & inhibitors*
  • Epoxide Hydrolases / metabolism
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Quinazolinones / chemical synthesis
  • Quinazolinones / chemistry
  • Quinazolinones / pharmacology*
  • Structure-Activity Relationship

Substances

  • Enzyme Inhibitors
  • Quinazolinones
  • Epoxide Hydrolases
  • EPHX2 protein, human