Considerations for Using the Vasculature as a Coordinate System to Map All the Cells in the Human Body

Front Cardiovasc Med. 2020 Mar 13;7:29. doi: 10.3389/fcvm.2020.00029. eCollection 2020.


Several ongoing international efforts are developing methods of localizing single cells within organs or mapping the entire human body at the single cell level, including the Chan Zuckerberg Initiative's Human Cell Atlas (HCA), and the Knut and Allice Wallenberg Foundation's Human Protein Atlas (HPA), and the National Institutes of Health's Human BioMolecular Atlas Program (HuBMAP). Their goals are to understand cell specialization, interactions, spatial organization in their natural context, and ultimately the function of every cell within the body. In the same way that the Human Genome Project had to assemble sequence data from different people to construct a complete sequence, multiple centers around the world are collecting tissue specimens from diverse populations that vary in age, race, sex, and body size. A challenge will be combining these heterogeneous tissue samples into a 3D reference map that will enable multiscale, multidimensional Google Maps-like exploration of the human body. Key to making alignment of tissue samples work is identifying and using a coordinate system called a Common Coordinate Framework (CCF), which defines the positions, or "addresses," in a reference body, from whole organs down to functional tissue units and individual cells. In this perspective, we examine the concept of a CCF based on the vasculature and describe why it would be an attractive choice for mapping the human body.

Keywords: atlas; blood vessel; coordinate system; human body; map; single cell; vasculature.