Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state
- PMID: 32232154
- PMCID: PMC7096169
- DOI: 10.1126/sciadv.aay7608
Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state
Abstract
Cellular bioenergetics (CBE) plays a critical role in tissue regeneration. Physiologically, an enhanced metabolic state facilitates anabolic biosynthesis and mitosis to accelerate regeneration. However, the development of approaches to reprogram CBE, toward the treatment of substantial tissue injuries, has been limited thus far. Here, we show that induced repair in a rabbit model of weight-bearing bone defects is greatly enhanced using a bioenergetic-active material (BAM) scaffold compared to commercialized poly(lactic acid) and calcium phosphate ceramic scaffolds. This material was composed of energy-active units that can be released in a sustained degradation-mediated fashion once implanted. By establishing an intramitochondrial metabolic bypass, the internalized energy-active units significantly elevate mitochondrial membrane potential (ΔΨm) to supply increased bioenergetic levels and accelerate bone formation. The ready-to-use material developed here represents a highly efficient and easy-to-implement therapeutic approach toward tissue regeneration, with promise for bench-to-bedside translation.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Figures
Similar articles
-
Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation.Acta Biomater. 2019 Aug;94:253-267. doi: 10.1016/j.actbio.2019.05.066. Epub 2019 May 31. Acta Biomater. 2019. PMID: 31154054
-
Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.Acta Biomater. 2016 Oct 15;44:155-67. doi: 10.1016/j.actbio.2016.08.039. Epub 2016 Aug 21. Acta Biomater. 2016. PMID: 27554019
-
A comparative study on agarose acetate and PDLLA scaffold for rabbit femur defect regeneration.Biomed Mater. 2019 Sep 20;14(6):065007. doi: 10.1088/1748-605X/ab3c1b. Biomed Mater. 2019. PMID: 31422950
-
Scaffolds and coatings for bone regeneration.J Mater Sci Mater Med. 2020 Mar 2;31(3):27. doi: 10.1007/s10856-020-06364-y. J Mater Sci Mater Med. 2020. PMID: 32124052 Review.
-
Peptide-Based Materials for Cartilage Tissue Regeneration.Adv Exp Med Biol. 2017;1030:155-166. doi: 10.1007/978-3-319-66095-0_7. Adv Exp Med Biol. 2017. PMID: 29081053 Review.
Cited by
-
Piezoelectric hydrogel for treatment of periodontitis through bioenergetic activation.Bioact Mater. 2024 Feb 14;35:346-361. doi: 10.1016/j.bioactmat.2024.02.011. eCollection 2024 May. Bioact Mater. 2024. PMID: 38379699 Free PMC article.
-
Aptamer-functionalized hydrogels promote bone healing by selectively recruiting endogenous bone marrow mesenchymal stem cells.Mater Today Bio. 2023 Nov 7;23:100854. doi: 10.1016/j.mtbio.2023.100854. eCollection 2023 Dec. Mater Today Bio. 2023. PMID: 38024846 Free PMC article.
-
Bioinspired nanovesicles released from injectable hydrogels facilitate diabetic wound healing by regulating macrophage polarization and endothelial cell dysfunction.J Nanobiotechnology. 2023 Oct 3;21(1):358. doi: 10.1186/s12951-023-02119-3. J Nanobiotechnology. 2023. PMID: 37789401 Free PMC article.
-
Advances in Bioresorbable Triboelectric Nanogenerators.Chem Rev. 2023 Oct 11;123(19):11559-11618. doi: 10.1021/acs.chemrev.3c00301. Epub 2023 Sep 27. Chem Rev. 2023. PMID: 37756249 Free PMC article. Review.
-
Microenvironment-targeted strategy steers advanced bone regeneration.Mater Today Bio. 2023 Jul 21;22:100741. doi: 10.1016/j.mtbio.2023.100741. eCollection 2023 Oct. Mater Today Bio. 2023. PMID: 37576867 Free PMC article. Review.
References
-
- Balogh Z. J., Reumann M. K., Gruen R. L., Mayer-Kuckuk P., Schuetz M. A., Harris I. A., Gabbe B. J., Bhandari M., Advances and future directions for management of trauma patients with musculoskeletal injuries. Lancet 380, 1109–1119 (2012). - PubMed
-
- Martino M. M., Tortelli F., Mochizuki M., Traub S., Ben-David D., Kuhn G. A., Müller R., Livne E., Eming S. A., Hubbell J. A., Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci. Transl. Med. 3, 100ra89 (2011). - PubMed
-
- Quarto R., Mastrogiacomo M., Cancedda R., Kutepov S. M., Mukhachev V., Lavroukov A., Kon E., Marcacci M., Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344, 385–386 (2001). - PubMed
-
- Agarwal S., Loder S. J., Brownley C., Eboda O., Peterson J. R., Hayano S., Wu B., Zhao B., Kaartinen V., Wong V. C., Mishina Y., Levi B., BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints. Dev. Biol. 400, 202–209 (2015). - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
