Emergence of prediction error along the human auditory hierarchy

Hear Res. 2021 Jan:399:107954. doi: 10.1016/j.heares.2020.107954. Epub 2020 Mar 22.

Abstract

Auditory prediction errors have been extensively associated with the mismatch negativity (MMN), a cortical auditory evoked potential that denotes deviance detection. Yet, many studies lacked the appropriate controls to disentangle sensory adaptation from prediction error. Furthermore, subcortical deviance detection has been shown in humans through recordings of the frequency-following response (FFR), an early auditory evoked potential that reflects the neural tracking of the periodic characteristics of a sound, suggesting the possibility that prediction errors emerge subcortically in the auditory pathway. The present study aimed at investigating the emergence of prediction error along the auditory hierarchy in humans through combined recordings of the FFR and the MMN, tapping at subcortical and cortical levels, respectively, while disentangling prediction error from sensory adaptation with the use of appropriate controls. "Oddball" sequences of pure tones featuring repeated "standard" stimuli (269 Hz; p = 0.8) and rare "deviant" stimuli (p = 0.2; of 289, 329 and 409 Hz delivered in separated blocks to test "frequency separation" effects) were presented to nineteen healthy young participants. "Reversed" oddball sequences (where standard and deviant tones swapped their roles) were presented allowing comparison of responses to same physical stimuli as a function of functional role (i.e., standard, deviant). Critically, control sequences featuring five equiprobable tones (p = 0.2) allowed to dissociate sensory adaptation from prediction error. Results revealed that the MMN amplitude increased as a function of frequency separation yet displayed the same amplitude when retrieved against the control sequences, confirming previous results. FFRs showed repetition enhancement effects across all frequency separations, as supported by larger spectral amplitude to standard than to deviant and control stimuli. This pattern of results provides insights into the hierarchy of the human prediction error system in audition, suggesting that prediction errors in humans emerge at cortical level.

Keywords: Control condition; Deviance detection; FFR; Frequency separation; MMN; Prediction error.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Auditory Cortex*
  • Auditory Perception
  • Electroencephalography
  • Evoked Potentials, Auditory
  • Humans
  • Reaction Time