Genome-wide identification and expression analysis of the CBF/DREB1 gene family in lettuce

Sci Rep. 2020 Mar 31;10(1):5733. doi: 10.1038/s41598-020-62458-1.

Abstract

The C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) proteins play a prominent role in freezing tolerance and are highly conserved in higher plants. Here we performed a genome-wide search of the CBF/DREB1 gene family in lettuce (Lactuca sativa L.) and identified 14 members of the family with one member gene containing a non-sense mutation within the AP2 DNA-binding domain. A comprehensive phylogenetic analysis of the CBF/DREB1 family members in 20 plant species from the Asterid or Rosid clade provided evidence that tandem duplication played an important role in the expansion of the CBF/DREB1 family. Expression analysis showed that twelve of the lettuce CBF genes were responsive to low temperature (4 °C), and that three and six of them could also be responsive to salt and heat stresses, respectively. Unlike Arabidopsis thaliana whose members of the CBF/DREB1 family respond only to a particular stress, lettuce CBFs provide wider protection from combinations of abiotic stresses. A global transcriptome analysis revealed distinctive temporal expression patterns among the cold-regulated genes in lettuce plants exposed to low temperature. Genes induced throughout the cold treatment are enriched in functions associated with protection from UV and high-light intensity and the genes suppressed after 7 days of cold exposure are enriched in photosynthesis-associated functions. These results provide insight into the molecular evolutionary properties of the CBF/DREB1 gene family in lettuce and a reference for genetic improvement of the lettuce response to cold acclimation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acclimatization / genetics*
  • Gene Expression
  • Gene Expression Regulation, Plant*
  • Lactuca / genetics*
  • Plant Proteins / genetics*
  • Transcription Factors / genetics*

Substances

  • Plant Proteins
  • Transcription Factors