Electronic health records and polygenic risk scores for predicting disease risk
- PMID: 32235907
- DOI: 10.1038/s41576-020-0224-1
Electronic health records and polygenic risk scores for predicting disease risk
Abstract
Accurate prediction of disease risk based on the genetic make-up of an individual is essential for effective prevention and personalized treatment. Nevertheless, to date, individual genetic variants from genome-wide association studies have achieved only moderate prediction of disease risk. The aggregation of genetic variants under a polygenic model shows promising improvements in prediction accuracies. Increasingly, electronic health records (EHRs) are being linked to patient genetic data in biobanks, which provides new opportunities for developing and applying polygenic risk scores in the clinic, to systematically examine and evaluate patient susceptibilities to disease. However, the heterogeneous nature of EHR data brings forth many practical challenges along every step of designing and implementing risk prediction strategies. In this Review, we present the unique considerations for using genotype and phenotype data from biobank-linked EHRs for polygenic risk prediction.
Similar articles
-
A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary Syndrome Evaluated by Phenome-Wide Association Studies.J Clin Endocrinol Metab. 2020 Jun 1;105(6):1918-36. doi: 10.1210/clinem/dgz326. J Clin Endocrinol Metab. 2020. PMID: 31917831 Free PMC article.
-
Exploring various polygenic risk scores for skin cancer in the phenomes of the Michigan genomics initiative and the UK Biobank with a visual catalog: PRSWeb.PLoS Genet. 2019 Jun 13;15(6):e1008202. doi: 10.1371/journal.pgen.1008202. eCollection 2019 Jun. PLoS Genet. 2019. PMID: 31194742 Free PMC article.
-
Portability of 245 polygenic scores when derived from the UK Biobank and applied to 9 ancestry groups from the same cohort.Am J Hum Genet. 2022 Jan 6;109(1):12-23. doi: 10.1016/j.ajhg.2021.11.008. Am J Hum Genet. 2022. PMID: 34995502 Free PMC article.
-
The Role of Electronic Health Records in Advancing Genomic Medicine.Annu Rev Genomics Hum Genet. 2021 Aug 31;22:219-238. doi: 10.1146/annurev-genom-121120-125204. Epub 2021 May 26. Annu Rev Genomics Hum Genet. 2021. PMID: 34038146 Free PMC article. Review.
-
Developing and evaluating polygenic risk prediction models for stratified disease prevention.Nat Rev Genet. 2016 Jul;17(7):392-406. doi: 10.1038/nrg.2016.27. Epub 2016 May 3. Nat Rev Genet. 2016. PMID: 27140283 Free PMC article. Review.
Cited by
-
Semi-supervised ROC analysis for reliable and streamlined evaluation of phenotyping algorithms.J Am Med Inform Assoc. 2024 Feb 16;31(3):640-650. doi: 10.1093/jamia/ocad226. J Am Med Inform Assoc. 2024. PMID: 38128118
-
Machine learning for the prediction of sepsis-related death: a systematic review and meta-analysis.BMC Med Inform Decis Mak. 2023 Dec 11;23(1):283. doi: 10.1186/s12911-023-02383-1. BMC Med Inform Decis Mak. 2023. PMID: 38082381 Free PMC article.
-
Calibrated prediction intervals for polygenic scores across diverse contexts.medRxiv [Preprint]. 2023 Jul 27:2023.07.24.23293056. doi: 10.1101/2023.07.24.23293056. medRxiv. 2023. PMID: 37546999 Free PMC article. Preprint.
-
Assessment of multi-population polygenic risk scores for lipid traits in African Americans.PeerJ. 2023 May 16;11:e14910. doi: 10.7717/peerj.14910. eCollection 2023. PeerJ. 2023. PMID: 37214096 Free PMC article.
-
Polygenic scoring accuracy varies across the genetic ancestry continuum.Nature. 2023 Jun;618(7966):774-781. doi: 10.1038/s41586-023-06079-4. Epub 2023 May 17. Nature. 2023. PMID: 37198491 Free PMC article.
References
-
- Preiss, D. & Kristensen, S. L. The new pooled cohort equations risk calculator. Can. J. Cardiol. 31, 613–619 (2015). - PubMed
-
- O’Sullivan, B. P. & Freedman, S. D. Cystic fibrosis. Lancet 373, 1891–1904 (2009). - PubMed
-
- Lo, A., Chernoff, H., Zheng, T. & Lo, S.-H. Why significant variables aren’t automatically good predictors. Proc. Natl Acad. Sci. USA 112, 13892–13897 (2015). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
