Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Apr 21;92(8):5838-5845.
doi: 10.1021/acs.analchem.9b05490. Epub 2020 Apr 2.

Noninvasive In Situ Ratiometric Imaging of Biometals Based on Self-Assembled Peptide Nanoribbon

Affiliations

Noninvasive In Situ Ratiometric Imaging of Biometals Based on Self-Assembled Peptide Nanoribbon

Li Lei et al. Anal Chem. .

Abstract

Development of probes for accurate sensing and imaging of biometals in situ is still a growing interest owing to their crucial roles in cellular metabolism, neurotransmission, and apoptosis. Among them, Zn2+ and Cu2+ are two important cooperative biometals closely related to Alzheimer's disease (AD). Herein, we developed a multifunctional probe based on self-assembling peptide nanoribbon for ratiometric sensing of Zn2+, Cu2+, or Zn2+ and Cu2+ simultaneously. Uniform peptide nanoribbon (AQZ@NR) was rationally designed by coassembling a Zn2+-specific ligand AQZ-modified peptide (AQZKL-7) with peptide KL-7. The nanoribbon further combined with Cu2+-sensitive near-infrared quantum dots (NIR QDs) and Alexa Fluor 633 as an inner reference molecule, which was endowed with the capability for ratiometric Zn2+ and Cu2+ imaging at the same time. The peptide-based probe exhibited good specificity to Zn2+ and Cu2+ without interference from other ions. Importantly, the nanoprobe was successfully applied for noninvasive Zn2+ and Cu2+ monitoring in both living cells and zebrafish via multicolor fluorescence imaging. This gives insights into the dynamic Zn2+ and Cu2+ distribution in an intracellular and in vivo mode, as well as understanding the neurotoxicity of high concentration of Zn2+ and Cu2+. Therefore, the self-assembled nanoprobe shows great promise in multiplexed detection of many other biometals and biomolecules, which will benefit the diagnosis and treatment of AD in clinical applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources