Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress
- PMID: 32242015
- PMCID: PMC7118135
- DOI: 10.1038/s41467-020-15471-x
Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress
Abstract
Some insects, such as dragonflies, have evolved nanoprotrusions on their wings that rupture bacteria on contact. This has inspired the design of antibacterial implant surfaces with insect-wing mimetic nanopillars made of synthetic materials. Here, we characterise the physiological and morphological effects of mimetic titanium nanopillars on bacteria. The nanopillars induce deformation and penetration of the Gram-positive and Gram-negative bacterial cell envelope, but do not rupture or lyse bacteria. They can also inhibit bacterial cell division, and trigger production of reactive oxygen species and increased abundance of oxidative stress proteins. Our results indicate that nanopillars' antibacterial activities may be mediated by oxidative stress, and do not necessarily require bacterial lysis.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Insights into complex nanopillar-bacteria interactions: Roles of nanotopography and bacterial surface proteins.J Colloid Interface Sci. 2021 Dec 15;604:91-103. doi: 10.1016/j.jcis.2021.06.173. Epub 2021 Jul 2. J Colloid Interface Sci. 2021. PMID: 34265695
-
Bactericidal activity of black silicon.Nat Commun. 2013;4:2838. doi: 10.1038/ncomms3838. Nat Commun. 2013. PMID: 24281410 Free PMC article.
-
Structure-Based Design of Dual Bactericidal and Bacteria-Releasing Nanosurfaces.ACS Appl Mater Interfaces. 2023 Jan 18;15(2):3420-3432. doi: 10.1021/acsami.2c18121. Epub 2023 Jan 4. ACS Appl Mater Interfaces. 2023. PMID: 36600562
-
A role for reactive oxygen species in the antibacterial properties of carbon monoxide-releasing molecules.FEMS Microbiol Lett. 2012 Nov;336(1):1-10. doi: 10.1111/j.1574-6968.2012.02633.x. Epub 2012 Jul 30. FEMS Microbiol Lett. 2012. PMID: 22774863 Review.
-
Antibacterial strategies inspired by the oxidative stress and response networks.J Microbiol. 2019 Mar;57(3):203-212. doi: 10.1007/s12275-019-8711-9. Epub 2019 Feb 26. J Microbiol. 2019. PMID: 30806977 Review.
Cited by
-
Antimicrobial mechanisms of nanopatterned surfaces-a developing story.Front Chem. 2024 Jan 29;12:1354755. doi: 10.3389/fchem.2024.1354755. eCollection 2024. Front Chem. 2024. PMID: 38348407 Free PMC article. Review.
-
Inherent Antibacterial Properties of Biodegradable FeMnC(Cu) Alloys for Implant Application.ACS Appl Bio Mater. 2024 Feb 19;7(2):839-852. doi: 10.1021/acsabm.3c00835. Epub 2024 Jan 22. ACS Appl Bio Mater. 2024. PMID: 38253353 Free PMC article.
-
Carbon-infiltrated carbon nanotubes inhibit the development of Staphylococcus aureus biofilms.Sci Rep. 2023 Nov 8;13(1):19398. doi: 10.1038/s41598-023-46748-y. Sci Rep. 2023. PMID: 37938619 Free PMC article.
-
Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications.Nanomaterials (Basel). 2023 Oct 20;13(20):2799. doi: 10.3390/nano13202799. Nanomaterials (Basel). 2023. PMID: 37887949 Free PMC article. Review.
-
Antibacterial micro/nanomotors: advancing biofilm research to support medical applications.J Nanobiotechnology. 2023 Oct 24;21(1):388. doi: 10.1186/s12951-023-02162-0. J Nanobiotechnology. 2023. PMID: 37875896 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
