Detailed Molecular and Structural Analysis of Dual Emitter IrQ(ppy)2 Complex

Materials (Basel). 2020 Apr 1;13(7):1617. doi: 10.3390/ma13071617.

Abstract

The molecular structure of the 8-hydroxyquinoline-bis (2-phenylpyridyl) iridium (IrQ(ppy)2) dual emitter organometallic compound is determined based on detailed 1D and 2D nuclear magnetic resonance (NMR), to identify metal-ligands coordination, isomerization and chemical yield of the desired compound. Meanwhile, the extended X-ray absorption fine structure (EXAFS) was used to determine the interatomic distances around the iridium ion. From the NMR results, this compound IrQ(ppy)2 exhibits a trans isomerization with a distribution of coordinated N-atoms in a similar way to facial Ir(ppy)3. The EXAFS measurements confirm the structural model of the IrQ(ppy)2 compound where the oxygen atoms from the quinoline ligands induce the splitting of the next-nearest neighboring C in the second shell of the Ir3+ ions. The high-performance liquid chromatography (HPLC), as a part of the detailed molecular analysis, confirms the purity of the desired IrQ(ppy)2 organometallic compound as being more than 95%, together with the progress of the chemical reactions towards the final compound. The theoretical model of the IrQ(ppy)2, concerning the expected bond lengths, is compared with the structural model from the EXAFS and XRD measurements.

Keywords: 2D NMR; EXAFS; carbon analysis; molecular structure; organometallic compound.