Differences in clinical and genetic characteristics between early- and late-onset narcolepsy in a Han Chinese cohort

Neural Regen Res. 2020 Oct;15(10):1887-1893. doi: 10.4103/1673-5374.280322.

Abstract

Early- and late-onset narcolepsy constitutes two distinct diagnostic subgroups. However, it is not clear whether symptomology and genetic risk factors differ between early- and late-onset narcoleptics. This study compared clinical data and single-nucleotide polymorphisms (SNPs) between early- and late-onset patients in a large cohort of 899 Han Chinese narcolepsy patients. Blood, cerebrospinal fluid, and clinical data were prospectively collected from patients, and patients were genotyped for 40 previously reported narcolepsy risk-conferring SNPs. Genetic risk scores (GRSs), associations of five different sets of SNPs (GRS1-GRS5) with early- and late-onset narcolepsy, were evaluated using logistic regression and receiver operating characteristic curves. Mean sleep latency was significantly shorter in early-onset cases than in late-onset cases. Symptom severity was greater among late-onset patients, with higher rates of sleep paralysis, hypnagogic hallucinations, health-related quality of life impairment, and concurrent presentation with four or more symptoms. Hypocretin levels did not differ significantly between early- and late-onset cases. Only rs3181077 (CCR1/CCR3) and rs9274477 (HLA-DQB1) were more prevalent among early-onset cases. Only GRS1 (26 SNPs; OR = 1.513, 95% CI: 0.893-2.585; P < 0.05) and GRS5 (6 SNPs; OR = 1.893, 95% CI: 1.204-2.993; P < 0.05) were associated with early-onset narcolepsy, with areas under the receiver operating characteristic curves of 0.731 and 0.732, respectively. Neither GRS1 nor GRS5 included SNPs in HLA regions. Our results indicate that symptomology and genetic risk factors differ between early- and late-onset narcolepsy. This protocol was approved by the Institutional Review Board (IRB) Panels on Medical Human Subjects at Peking University People's Hospital, China (approval No. Yuanlunshenlinyi 86) in October 2011.

Keywords: case-control studies; clinical features; genetic association studies; genetic load; genetic loci; genetic phenomena; hypothalamic diseases; precision medicine; risk assessment; single nucleotide polymorphism.