Time-domain induced polarization as a tool to image clogging in treatment wetlands

Sci Total Environ. 2020 Jul 1;724:138189. doi: 10.1016/j.scitotenv.2020.138189. Epub 2020 Mar 25.

Abstract

During the last decade, treatment (artificial) wetlands have flourished all over Europe for the treatment of sewages from small communities thanks to their low cost of operation. The clogging of the filter of these wetlands is an issue affecting their efficiency and considered as their main operational problem. The present work shows the results of the application of a geophysical method called time-domain induced polarization. It is used to non-intrusively image, in 3D, the clogging of the gravel filters in a quick and efficient way. Induced polarization characterizes the ability of a porous material to reversibly store electrical charges when submitted to an electrical field. The material property characterizing this ability is called normalized chargeability. A set of laboratory experiments allows to determine an empirical relationship between the normalized chargeability and the weight amount of clogging. Induced polarization measurements have been performed in the field over a treatment wetland to get a 3D reconstructed image (tomography) of the normalized chargeability. From this tomography and the previously defined relationship, we are able to image in 3D the distribution of clogging and where it is concentrated in the filter. We can therefore identify the areas requiring preventive measures to minimize this clogging issue.

Keywords: Chargeability; Clogging; Tomography; Treatment wetland.