Prostate MRI has seen increasing interest in recent years and has led to the development of new MRI techniques and sequences to improve prostate cancer (PCa) diagnosis which are reviewed in this article. Numerous studies have focused on improving image quality (segmented DWI) and faster acquisition (compressed sensing, k-t-SENSE, PROPELLER). An increasing number of studies have developed new quantitative and computer-aided diagnosis methods including artificial intelligence (PROSTATEx challenge) that mitigate the subjective nature of mpMRI interpretation. MR fingerprinting allows rapid, simultaneous generation of quantitative maps of multiple physical properties (T1, T2), where PCa are characterized by lower T1 and T2 values. New techniques like luminal water imaging (LWI), restriction spectrum imaging (RSI), VERDICT and hybrid multi-dimensional MRI (HM-MRI) have been developed for microstructure imaging, which provide information similar to histology. The distinct MR properties of tissue components and their change with the presence of cancer is used to diagnose prostate cancer. LWI is a T2-based imaging technique where long T2-component corresponding to luminal water is reduced in PCa. RSI and VERDICT are diffusion-based techniques where PCa is characterized by increased signal from intra-cellular restricted water and increased intracellular volume fraction, respectively, due to increased cellularity. VERDICT also reveal loss of extracellular-extravascular space in PCa due to loss of glandular structure. HM-MRI measures volumes of prostate tissue components, where PCa has reduced lumen and stromal and increased epithelium volume similar to results shown in histology. Similarly, molecular imaging using hyperpolarized 13C imaging has been utilized.
Keywords: Hybrid multi-dimensional MRI; Hyperpolarized 13C MRI; Luminal water imaging; MR fingerprinting; MRI; Prostate cancer; Prostatex; Restriction spectrum imaging; Segmented or multi-shot DWI; VERDICT.