A sleep spindle framework for motor memory consolidation

Philos Trans R Soc Lond B Biol Sci. 2020 May 25;375(1799):20190232. doi: 10.1098/rstb.2019.0232. Epub 2020 Apr 6.

Abstract

Sleep spindle activity has repeatedly been found to contribute to brain plasticity and consolidation of both declarative and procedural memories. Here we propose a framework for motor memory consolidation that outlines the essential contribution of the hierarchical and multi-scale periodicity of spindle activity, as well as of the synchronization and interaction of brain oscillations during this sleep-dependent process. We posit that the clustering of sleep spindles in 'trains', together with the temporally organized alternation between spindles and associated refractory periods, is critical for efficient reprocessing and consolidation of motor memories. We further argue that the long-term retention of procedural memories relies on the synchronized (functional connectivity) local reprocessing of new information across segregated, but inter-connected brain regions that are involved in the initial learning process. Finally, we propose that oscillatory synchrony in the spindle frequency band may reflect the cross-structural reactivation, reorganization and consolidation of motor, and potentially declarative, memory traces within broader subcortical-cortical networks during sleep. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.

Keywords: hippocampus; memory consolidation; motor sequence learning; sleep; spindles; striatum.

Publication types

  • Review

MeSH terms

  • Animals
  • Humans
  • Memory Consolidation / physiology*
  • Motor Activity / physiology*
  • Sleep / physiology*