Spatial organization of occipital white matter tracts in the common marmoset

Brain Struct Funct. 2020 May;225(4):1313-1326. doi: 10.1007/s00429-020-02060-3. Epub 2020 Apr 6.


The primate brain contains a large number of interconnected visual areas, whose spatial organization and intracortical projections show a high level of conservation across species. One fiber pathway of recent interest is the vertical occipital fasciculus (VOF), which is thought to support communication between dorsal and ventral visual areas in the occipital lobe. A recent comparative diffusion MRI (dMRI) study reported that the VOF in the macaque brain bears a similar topology to that of the human, running superficial and roughly perpendicular to the optic radiation. The present study reports a comparative investigation of the VOF in the common marmoset, a small New World monkey whose lissencephalic brain is approximately tenfold smaller than the macaque and 150-fold smaller than the human. High-resolution ex vivo dMRI of two marmoset brains revealed an occipital white matter structure that closely resembles that of the larger primate species, with one notable difference. Namely, unlike in the macaque and the human, the VOF in the marmoset is spatially fused with other, more anterior vertical tracts, extending anteriorly between the parietal and temporal cortices. We compare several aspects of this continuous structure, which we term the VOF complex (VOF +), and neighboring fasciculi to those of macaques and humans. We hypothesize that the essential topology of the VOF+ is a conserved feature of the posterior cortex in anthropoid primates, with a clearer fragmentation into multiple named fasciculi in larger, more gyrified brains.

Keywords: Comparative anatomy; Diffusion MRI; Marmoset; Vertical occipital fasciculus; Visual cortex; White matter.

MeSH terms

  • Animals
  • Callithrix
  • Diffusion Tensor Imaging
  • Humans
  • Image Processing, Computer-Assisted / methods
  • Occipital Lobe / anatomy & histology*
  • Species Specificity
  • Visual Pathways / anatomy & histology
  • White Matter / anatomy & histology*