Elevation of the unfolded protein response increases RANKL expression

FASEB Bioadv. 2020 Jan 31;2(4):207-218. doi: 10.1096/fba.2019-00032. eCollection 2020 Apr.


Increased production of the osteoclastogenic cytokine RANKL is a common feature of pathologic bone loss, but the underlying cause of this increase is poorly understood. The unfolded protein response (UPR) is activated in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER). Failure to resolve misfolding results in excess UPR signaling that stimulates cytokine production and cell death. We therefore investigated whether RANKL is one of the cytokines stimulated in response to elevated UPR in bone cells. Pharmacologic induction of UPR with tunicamycin (Tm)-stimulated RANKL expression in cultures of primary osteoblastic cells and in osteoblast and osteocyte cell lines. Pharmacologic inhibition of the UPR blunted Tm-induced RANKL production. Silencing Edem1 or Sel1l, proteins that aid in degradation of misfolded proteins, also induced UPR and increased RANKL mRNA. Moreover, Tm or hypoxia increased RANKL and bone resorption in cultures of neonatal murine calvaria. Administration of Tm to adult mice caused dilation of ER in osteoblasts and osteocytes, elevated the UPR, and increased RANKL expression and osteoclast number. These findings support the hypothesis that excessive UPR signaling stimulates the expression of RANKL by osteoblasts and osteocytes, and thereby facilitates excessive bone resorption and bone loss in pathologic conditions.

Keywords: calvaria; cytokines; endoplasmic reticulum stress; osteoblast; osteocyte.