Hollow mesoporous carbon nanocarriers for vancomycin delivery: understanding the structure-release relationship for prolonged antibacterial performance

J Mater Chem B. 2016 Nov 21;4(43):7014-7021. doi: 10.1039/c6tb01778a. Epub 2016 Oct 18.

Abstract

Mono-dispersed mesoporous hollow carbon (MHC) nanospheres with comparable structures have been designed as nanocarriers for the delivery of vancomycin (Van) to inhibit bacterial growth. It is demonstrated that MHC materials possess a Van loading capacity of 861 mg g-1, much higher than that of any Van nanocarrier in previous reports. By comparing the drug loading, release and antibacterial performance of MHC nanospheres with controllable structures, it is shown that MHC with a pore size of 5.8 nm and a wall thickness of 25 nm exhibits compromising storage-release behaviour and achieves extended bactericidal activity of Van towards E. coli and S. epidermidis compared to free Van and other MHC nanocarriers. This study provides new knowledge about the rational design of carbon based nanocarriers to enhance the therapeutic efficacy of antibiotics.