Prediction of Soil Adsorption Coefficient in Pesticides Using Physicochemical Properties and Molecular Descriptors by Machine Learning Models

Environ Toxicol Chem. 2020 Jul;39(7):1451-1459. doi: 10.1002/etc.4724. Epub 2020 Jun 15.

Abstract

The soil adsorption coefficient (KOC ) plays an important role in environmental risk assessment of pesticide registration. Based on this risk assessment, applied and registered pesticides can be allowed in the European Union. Almost 1 yr is required to study and obtain the KOC value of a pesticide. Furthermore, acquiring the KOC requires a large cost. It is necessary to efficiently estimate the KOC value in the early stages of pesticide development. In the present study, the experimental values of physicochemical properties and molecular descriptors of chemical structures were collected to develop a quantitative structure-property relationship (QSPR) model, and the prediction performance of the model was evaluated. More specifically, we compared the accuracies of models based on a gradient boosting decision tree, multiple linear regression, and support vector machine. The experimental results suggest that it is possible to develop a QSPR model with high accuracy using both the molecular descriptors calculated from the structural formula and experimental values of physicochemical properties from open literature and databases. Comparing to the previously established models, we achieved high prediction accuracy, fitness, and robustness by only using freeware. Therefore, our developed QSPR models can be useful preliminary risk assessment in the early developmental stages of pesticides. Environ Toxicol Chem 2020;39:1451-1459. © 2020 SETAC.

Keywords: Environmental fate; KOC; Machine learning; Multivariate statistics; Pesticide risk assessment; Quantitative structure-activity relationship.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Chemical Phenomena*
  • Decision Trees
  • Linear Models
  • Machine Learning*
  • Pesticides / analysis*
  • Quantitative Structure-Activity Relationship
  • Risk Assessment
  • Soil / chemistry*
  • Soil Pollutants / analysis

Substances

  • Pesticides
  • Soil
  • Soil Pollutants