Purpose: There is conflicting advice about the inclusion of dairy foods in a lower greenhouse gas (GHG) emission dietary pattern. Our purpose was to assess the prevalence of dairy food intake among higher diet quality and lower GHG emission diets in Australia and within these diets assess the association between level of dairy food intake and adequate intake of a broad range of nutrients.
Methods: Dietary intake data collected using a 24-h recall process were sourced from the most recent Australian Health Survey. Diet quality was assessed by level of compliance with the food group-based Australian Dietary Guidelines. A subgroup of 1732 adult (19 years and above) daily diets was identified having higher diet quality score and lower GHG emissions (HQLE). Intake of core dairy foods (milk, cheese, yoghurt) was assessed and nutrient profiling was undertaken for 42 macro- and micronutrients.
Results: The HQLE subgroup had 37% higher diet quality score and 43% lower GHG emissions than the average Australian adult diet (P < 0.05). Intake of dairy foods was very common (90% of HQLE diets) and greatly exceeded the intake of non-dairy alternatives (1.53 serves compared to 0.04 serves). HQLE daily diets in the highest tertile of dairy food intake were more likely to achieve the recommended intake of a wide range of nutrients, including calcium, protein, riboflavin, vitamin B12, folate, phosphorous, magnesium, iodine and potassium compared to other HQLE daily diets.
Conclusion: Core dairy foods have an important role for achieving adequate nutrient intakes in a healthy and lower GHG emission dietary pattern in Australia.
Keywords: Micronutrients; Nutrient adequate intake; Nutritional quality; Protein; Public health nutrition; Sustainable diet.